-th ประถมศึกษาพหุนามสมมาตรคือผลรวมของทั้งหมดผลิตภัณฑ์ของตัวแปรที่แตกต่างกัน ฉันสนใจในความซับซ้อนของวงจรเลขคณิตของพหุนามนี้ อัลกอริธึมการเขียนโปรแกรมแบบไดนามิกอย่างง่าย (เช่นเดียวกับรูปที่ 1 ด้านล่าง) ให้วงจรพร้อมประตู k(+,×)(+,×)O(kn)
คำถาม: รู้จักขอบเขตต่ำกว่า หรือไม่?
วงจรAจะเอียงหากอย่างน้อยหนึ่งในสองอินพุตของแต่ละเกทผลิตภัณฑ์เป็นตัวแปร วงจรดังกล่าวเป็นจริงเหมือนกับเครือข่ายการสลับและการแก้ไข (กราฟ acyclic กำกับด้วยขอบบางอย่างที่มีป้ายกำกับโดยตัวแปร; แต่ละเส้นทางเซนต์ให้ผลิตภัณฑ์ของฉลากของมันและเอาท์พุทเป็นผลรวมของทุกเส้นทางเซนต์) แล้ว 40 ปีที่ผ่านมามาร์คอฟได้รับการพิสูจน์ผลแน่นน่าแปลกใจที่: เสียงเดียวน้อยที่สุดวงจรเอียงทางคณิตศาสตร์สำหรับได้ว่าประตูสินค้า บนที่ถูกผูกไว้ดังนี้จากรูปที่ 1.
แต่ฉันไม่เคยเห็นความพยายามใด ๆ ที่จะพิสูจน์ว่าขอบเขตที่ต่ำกว่าสำหรับวงจรที่ไม่เอียง นี่เป็นเพียง "ความเย่อหยิ่ง" ของเราหรือมีปัญหาบางอย่างที่เกิดขึ้นระหว่างทางหรือไม่?
PS ฉันรู้ว่าประตูเป็นสิ่งที่จำเป็นไปพร้อม ๆ กันการคำนวณทั้งหมด n สิ่งนี้ตามมาจากขอบเขตล่างของขนาดของวงจรบูลีนโมโนโทนซึ่งเรียงลำดับอินพุต 0-1; ดูที่หน้า 158 ของหนังสือ Ingo Wegener ของ เครือข่าย AKS เรียงลำดับนอกจากนี้ยังแสดงให้เห็นว่าประตูมีเพียงพอในเรื่องนี้ (บูล) กรณี ที่จริงBaur และ Strassenได้พิสูจน์แน่นผูกพันกับขนาดของที่ไม่ใช่เสียงเดียววงจรทางคณิตศาสตร์สำหรับ n แต่วงจรทางคณิตศาสตร์แบบโมโนโทนล่ะ?S n 1 , ... , S n n O ( n log n ) Θ ( n log n ) S n n / 2