ภาษา


12

ภาษาอื่นที่มีปัญหาแตกต่างจากกราฟ isomorphism ในคืออะไร? คุณสามารถให้การอ้างอิงบางอย่าง?NPcoAM

ปรับปรุง:ฉันลืมที่จะพูดถึงว่าฉันสนใจในภาษาไม่เป็นที่รู้จักที่จะอยู่ในcoNPcoNP


คุณหมายถึงคนที่ไม่รู้จักอยู่ในใช่ไหม? coNP
ilyaraz

ใช่ฉันลืมที่จะพูดถึงว่า
Marcos Villagra

แต่เชื่อว่าดังนั้นวิธีที่ดีที่สุดในการกำหนดคำถามคือการแทนที่ความเชื่อโดยที่รู้จัก ขอโทษสำหรับการอวดรู้ของฉัน coNP=coAM
ilyaraz

คำตอบ:


10

อีกสิ่งหนึ่งที่ฉันรู้ก็คือปัญหามอร์ฟิซึ่มส์: กลุ่มมอร์ฟและแหวนมอร์ฟ โปรโตคอลสำหรับทั้งสองเหล่านี้เป็นหลักเช่นเดียวกับกราฟมอร์ฟcoAM

กลุ่มมอร์ฟิซึ่มลดไปที่กราฟมอร์ฟ

สิ่งที่น่าสนใจไม่เหมือน (คือสิ่งที่รู้กัน) กลุ่มและกราฟสำหรับแหวนการพิจารณาว่าแหวนมีออโต้มอร์ฟิซึมแบบไม่อยู่ในรูปแบบหรือไม่ในขณะที่การหาออโตมอร์ฟิซึมแบบไม่น่าสนใจนั้น ดูNeeraj Kayal, Nitin Saxena ความซับซ้อนของปัญหามอร์ฟิซึ่มแหวน. การคำนวณความซับซ้อน 15 (4): 342-390 (2006)P


9

ปัญหาอีกประการหนึ่งคือการค้นหาวิธีแก้ไขปัญหาโดยประมาณสำหรับปัญหาเวกเตอร์ที่สั้นที่สุดหรือใกล้เคียงที่สุด (SVP, CVP) ตัวอย่างเช่นมันได้รับการพิสูจน์แล้ว (โดยGoldreich และ Goldwasser, 1998 ) ที่ประมาณ SVP ภายในปัจจัยของอยู่ในโดยที่หมายถึงมิติของ ขัดแตะ ไม่ทราบว่าปัญหานี้อยู่ในหรือไม่O(n/log(n))NPcoAMncoNP

ในทางกลับกันก็เป็นที่รู้จักกัน (ดูAharonov และจีฟ 2004 ) ว่าการหา -approximate การแก้ปัญหาอยู่ในcoNPO(n)NPcoNP


2
สิ่งเหล่านี้คือปัญหาการค้นหาไม่ใช่ปัญหาการตัดสินใจและตัวแปรการตัดสินใจของปัญหาการประมาณนั้นเป็นปัญหาที่สัญญาไว้ Andy Drucker และฉันมีการสนทนาคล้ายกันเกี่ยวกับ SVP และ CVP ที่cstheory.stackexchange.com/questions/330/… "
Joshua Grochow

6

ดีฉันรู้ว่าและภาษาที่มีสถิติพิสูจน์ศูนย์ความรู้ทุกตกอยู่ใน{} สัญลักษณ์ {} (โดยที่เป็นคลาสของภาษาที่ยอมรับความรู้ที่สมบูรณ์แบบเป็นศูนย์และเป็นคลาสของภาษาที่ยอมรับความรู้ทางสถิติเป็นศูนย์) ดูลิงค์ต่อไปนี้เพื่อพิสูจน์:NPAMAMcoAMPZKSZKAMcoAMPZKSZK

ความซับซ้อนของความรู้ที่สมบูรณ์แบบเป็นศูนย์

สถิติศูนย์ความรู้ภาษาสามารถรับรู้ในสองรอบ

ภาษาเช่นปัญหาเวกเตอร์ที่สั้นที่สุดหรือใกล้เคียงที่สุด (SVP, CVP) อยู่ใน (ดูกระดาษโดย Goldreich และ Goldwasser ที่อ้างถึงข้างต้น)SZK

โดยการใช้ไซต์ของเรา หมายความว่าคุณได้อ่านและทำความเข้าใจนโยบายคุกกี้และนโยบายความเป็นส่วนตัวของเราแล้ว
Licensed under cc by-sa 3.0 with attribution required.