สมมติว่าเราได้รูปหลายเหลี่ยมที่ไม่ปะติดปะต่อกันในระนาบและสองจุดและอยู่นอกรูปหลายเหลี่ยม ปัญหาเส้นทางที่สั้นที่สุดของยุคลิดคือการคำนวณเส้นทางที่สั้นที่สุดของยุคลิดจากถึงที่ไม่ตัดกันภายในของรูปหลายเหลี่ยมใด ๆ สำหรับ concreteness ขอให้เราสมมติว่าพิกัดของและและพิกัดของจุดยอดรูปหลายเหลี่ยมทุกอันเป็นจำนวนเต็ม
สามารถแก้ไขปัญหานี้ได้ในเวลาพหุนามหรือไม่?
เครื่องวัดตำแหน่งทางภูมิศาสตร์ส่วนใหญ่จะบอกว่าใช่แน่นอน: John Hershberger และ Subhash Suriอธิบายถึงอัลกอริทึมที่คำนวณเส้นทางที่สั้นที่สุดของ Euclidean ในเวลาและเวลานี้เหมาะสมที่สุดในแบบจำลองการคำนวณเชิงพีชคณิต น่าเสียดายที่อัลกอริทึมของ Hershberger และ Suri (และอัลกอริธึมที่เกี่ยวข้องเกือบทั้งหมดก่อนและหลัง) ดูเหมือนว่าจะต้องใช้เลขคณิตจริงที่แน่นอนในความหมายที่เข้มงวดดังต่อไปนี้
โทรหารูปหลายเหลี่ยมที่ถูกต้องถ้าจุดภายในทั้งหมดเป็นจุดยอดของสิ่งกีดขวาง เส้นทางที่สั้นที่สุดของ Euclidean นั้นใช้ได้ ความยาวของเส้นทางที่ถูกต้องคือผลรวมของสแควร์รูทของจำนวนเต็ม ดังนั้นการเปรียบเทียบความยาวของสองเส้นทางที่ถูกต้องต้องเปรียบเทียบสองผลรวมของรากซึ่งเราไม่ทราบว่าจะทำอย่างไรในเวลาพหุนาม
ยิ่งไปกว่านั้นดูเหมือนว่าเป็นไปได้อย่างสมบูรณ์ว่าปัญหาที่เกิดขึ้นโดยพลการของผลรวมของสแควร์รูทสามารถลดลงเป็นปัญหาเส้นทางที่สั้นที่สุดของยูคลิด
ดังนั้น: มีอัลกอริธึมเวลาพหุนามในการคำนวณเส้นทางที่สั้นที่สุดของ Euclidean หรือไม่? หรือเป็นปัญหา NP-hard? หรือsum-of-ตารางรากแข็ง ? หรืออย่างอื่น?
หมายเหตุเล็กน้อย:
เส้นทางที่สั้นที่สุดใน (หรือนอก) รูปหลายเหลี่ยมหนึ่งอันสามารถคำนวณได้ในเวลาโดยไม่มีปัญหาเชิงตัวเลขแปลก ๆ โดยใช้อัลกอริทึมช่องทางมาตรฐานอย่างน้อยถ้ามีการระบุสามเหลี่ยมของรูปหลายเหลี่ยม
ในทางปฏิบัติเลขทศนิยมนั้นเพียงพอที่จะคำนวณเส้นทางที่สั้นที่สุดจนถึงความแม่นยำจุดลอยตัว ฉันสนใจเฉพาะความซับซ้อนของปัญหาที่แน่นอน
John Canny และ John Reifพิสูจน์ว่าปัญหาที่เกี่ยวข้องใน 3-space คือ NP-hard (ในเชิงศีลธรรมเพราะอาจมีจำนวนเส้นทางที่สั้นที่สุดเป็นจำนวนมาก) Joonsoo Choi, Jürgen Sellen และ Chee-Keng Yapอธิบายรูปแบบการประมาณเวลาพหุนาม
Simon Kahan และ Jack Snoeyinkพิจารณาปัญหาที่คล้ายกันสำหรับปัญหาที่เกี่ยวข้องกับเส้นทางการเชื่อมโยงขั้นต่ำในรูปหลายเหลี่ยมอย่างง่าย