ฉันต้องการทราบว่ามีการศึกษาปัญหาง่าย ๆ ดังต่อไปนี้มาก่อนหรือไม่
ให้ G เป็นกริดที่ จำกัด (MxN) เป็นเซตย่อยของเซลล์ของ G ("crumbs") เศษเล็กเศษน้อยสองชิ้นถูกกล่าวว่าเชื่อมต่อกัน (ภายในเครื่อง) หากพิกัดของพวกเขาแตกต่างกันมากที่สุด (กล่าวคือถ้าวาดเป็นสี่เหลี่ยมพวกมันจะแบ่งมุมอย่างน้อยหนึ่งจุด)
ตอนนี้เราสามารถลองเชื่อมต่อ crumbs (ชุดของมันโดยรวม) โดยการเรียงสับเปลี่ยนบรรทัดและคอลัมน์ของกริด กล่าวอีกนัยหนึ่งเป้าหมายคือการเกิดการเปลี่ยนแปลงของเส้นและการเรียงสับเปลี่ยนของคอลัมน์เพื่อให้เศษสองชิ้นใด ๆ ในตารางผลลัพธ์นั้นเชื่อมโยงกันด้วยห่วงโซ่ของเศษที่เชื่อมต่อ
คำถาม: จะมีทางออกเสมอไหม?
ฉันไม่ค่อยรู้วิธีการโจมตี สำหรับการขาดความคิดที่ดีกว่าฉันได้เขียนโปรแกรมดิบที่มองหาวิธีการแก้ปัญหาโดยกำลังดุร้าย (มันสร้างการเรียงสับเปลี่ยนแบบสุ่มและตรวจสอบว่าตารางผลลัพธ์มีการเชื่อมต่อ crumbs หรือไม่) โปรแกรมพบโซลูชั่นที่มีขนาดเล็กเสมอ (10x10 หรือ 7x14) กริดและกริดที่ใหญ่กว่านั้นชัดเจนว่าไม่สามารถเข้าถึงกลยุทธ์แบบง่าย ๆ ได้ (จะใช้เวลานานเกินกว่าจะสุ่มข้ามโซลูชัน)
นี่คือตัวอย่างของตารางที่โปรแกรมแก้ไข:
กริดเริ่มต้น (crumbs แสดงโดย X's, เซลล์ว่างเปล่าตามจุด):
0 1 2 3 4 5 6 7 8 9
0 X . X X . X . X X .
1 X . . . . X . . . .
2 . . X . . . . X . X
3 . X . . X . X . . X
4 . . . X . . . . . .
5 X X . . . X X . X .
6 . . . X . . . . X .
7 X . X . . X . . . .
8 X . . . X . . X X .
สารละลาย:
6 1 4 7 8 2 9 3 5 0
1 . . . . . . . . X X
4 . . . . . . . X . .
5 X X . . X . . . X X
8 . . X X X . . . . X
7 . . . . . X . . X X
0 . . . X X X . X X X
3 X X X . . . X . . .
6 . . . . X . . X . .
2 . . . X . X X . . .
ตามธรรมชาติแล้วปัญหาสามารถถูกทำให้เป็นมาตรฐานโดยทั่วไปในมิติใด ๆ d> 2. ฉันคิดว่าการพิจารณาในลักษณะอื่น ๆ
ขอบคุณล่วงหน้า,
ยานน์เดวิด