Paper: อะไรคือความแตกต่างระหว่างการปรับสภาพเลเยอร์, การทำซ้ำเป็นชุดงานประจำ (2016), และการวางเป็นบรรทัดฐานปกติ RNN (2015)?
ดังนั้นเมื่อเร็ว ๆ นี้มีกระดาษมาตรฐานการทำให้เป็นปกติ นอกจากนี้ยังมีการนำไปใช้กับ Keras แต่ฉันจำได้ว่ามีเอกสารชื่อRecurrent Batch Normalization (Cooijmans, 2016) และBatch Normalized Recurrent Neural Networks (Laurent, 2015) ความแตกต่างระหว่างสามสิ่งนี้คืออะไร? มีส่วนงานที่เกี่ยวข้องนี้ฉันไม่เข้าใจ: การทำให้เป็นมาตรฐานของกลุ่มได้ถูกขยายไปยังเครือข่ายประสาทที่เกิดขึ้นอีกครั้ง [Laurent et al., 2015, Amodei et al., 2015, Cooijmans et al., 2016] งานก่อนหน้านี้ [Cooijmans et al., 2016] แสดงให้เห็นถึงประสิทธิภาพที่ดีที่สุดของการทำให้เป็นมาตรฐานการเกิดซ้ำที่เกิดขึ้นจากการรักษาสถิติการทำให้ปกติเป็นอิสระสำหรับแต่ละขั้นตอน ผู้เขียนแสดงให้เห็นว่าการกำหนดค่าเริ่มต้นของพารามิเตอร์ gain ในเลเยอร์การทำให้เป็นปกติของแบตช์กลับเป็น 0.1 ทำให้เกิดความแตกต่างอย่างมีนัยสำคัญในประสิทธิภาพสุดท้ายของตัวแบบ งานของเรายังเกี่ยวข้องกับการทำให้น้ำหนักปกติ [Salimans and Kingma, 2016] ในการทำให้น้ำหนักเป็นมาตรฐานแทนที่จะเป็นความแปรปรวนค่า L2 …