คำถามติดแท็ก prediction

5
การทำนายอนุกรมเวลาโดยใช้ ARIMA กับ LSTM
ปัญหาที่ฉันจัดการคือการทำนายค่าอนุกรมเวลา ฉันกำลังดูซีรีส์ครั้งเดียวในแต่ละครั้งและตามตัวอย่างเช่น 15% ของข้อมูลอินพุตฉันต้องการทำนายค่าในอนาคต จนถึงตอนนี้ฉันเจอสองรุ่น: LSTM (หน่วยความจำระยะสั้นระยะยาวคลาสของเครือข่ายประสาทที่เกิดขึ้นอีก) ARIMA ฉันลองทั้งสองและอ่านบทความเกี่ยวกับพวกเขา ตอนนี้ฉันพยายามทำความเข้าใจให้ดีขึ้นเกี่ยวกับวิธีเปรียบเทียบทั้งสอง สิ่งที่ฉันได้พบจนถึง: LSTM ทำงานได้ดีขึ้นหากเราจัดการกับข้อมูลจำนวนมากและมีข้อมูลการฝึกอบรมเพียงพอในขณะที่ ARIMA จะดีกว่าสำหรับชุดข้อมูลขนาดเล็ก (ถูกต้องหรือไม่) ARIMA ต้องการชุดพารามิเตอร์(p,q,d)ที่ต้องคำนวณตามข้อมูลในขณะที่ LSTM ไม่ต้องการตั้งค่าพารามิเตอร์ดังกล่าว อย่างไรก็ตามมีพารามิเตอร์หลายอย่างที่เราต้องปรับแต่งสำหรับ LSTM แก้ไข:หนึ่งความแตกต่างที่สำคัญระหว่างสองที่ฉันสังเกตเห็นในขณะที่อ่านบทความที่ดีที่นี่คือ ARIMA สามารถทำงานได้ดีในซีรีส์เวลานิ่ง (ที่ไม่มีฤดูกาลแนวโน้มและอื่น ๆ ) และคุณต้องดูแลว่าถ้า ต้องการใช้ ARIMA นอกเหนือจากคุณสมบัติที่กล่าวถึงข้างต้นฉันไม่สามารถหาจุดหรือข้อเท็จจริงอื่นใดที่สามารถช่วยฉันเลือกรูปแบบที่ดีที่สุดได้ ฉันจะขอบคุณจริง ๆ ถ้ามีคนช่วยฉันค้นหาบทความเอกสารหรือสิ่งอื่น ๆ (ไม่มีโชคจนถึงตอนนี้มีเพียงความคิดเห็นทั่วไปบางส่วนที่นี่และที่นั่นและไม่มีอะไรจากการทดลอง) ฉันต้องพูดถึงว่าตอนแรกฉันกำลังจัดการกับข้อมูลสตรีมมิ่ง แต่ตอนนี้ฉันกำลังใช้ชุดข้อมูล NABซึ่งรวมถึง 50 ชุดข้อมูลที่มีขนาดสูงสุด 20k จุดข้อมูล

5
ทำให้แผนที่ความร้อนของทะเลใหญ่ขึ้น
ฉันสร้างcorr()df จาก df ดั้งเดิม corr()DF ออก 70 X 70 มาและมันเป็นไปไม่ได้ที่จะเห็นภาพ heatmap ส sns.heatmap(df)... ถ้าฉันพยายามที่จะแสดงcorr = df.corr()ตารางที่ไม่พอดีกับหน้าจอและฉันสามารถดูความสัมพันธ์ทั้งหมด มันเป็นวิธีที่จะพิมพ์ทั้งdfโดยไม่คำนึงถึงขนาดของมันหรือเพื่อควบคุมขนาดของ heatmap หรือไม่?
17 visualization  pandas  plotting  machine-learning  neural-network  svm  decision-trees  svm  efficiency  python  linear-regression  machine-learning  nlp  topic-model  lda  named-entity-recognition  naive-bayes-classifier  association-rules  fuzzy-logic  kaggle  deep-learning  tensorflow  inception  classification  feature-selection  feature-engineering  machine-learning  scikit-learn  tensorflow  keras  encoding  nlp  text-mining  nlp  rnn  python  neural-network  feature-extraction  machine-learning  predictive-modeling  python  r  linear-regression  clustering  r  ggplot2  neural-network  neural-network  training  python  neural-network  deep-learning  rnn  predictive-modeling  databases  sql  programming  distribution  dataset  cross-validation  neural-network  deep-learning  rnn  machine-learning  machine-learning  python  deep-learning  data-mining  tensorflow  visualization  tools  sql  embeddings  orange  feature-extraction  unsupervised-learning  gan  machine-learning  python  data-mining  pandas  machine-learning  data-mining  bigdata  apache-spark  apache-hadoop  deep-learning  python  convnet  keras  aggregation  clustering  k-means  r  random-forest  decision-trees  reference-request  visualization  data  pandas  plotting  neural-network  keras  rnn  theano  deep-learning  tensorflow  inception  predictive-modeling  deep-learning  regression  sentiment-analysis  nlp  encoding  deep-learning  python  scikit-learn  lda  convnet  keras  predictive-modeling  regression  overfitting  regression  svm  prediction  machine-learning  similarity  word2vec  information-retrieval  word-embeddings  neural-network  deep-learning  rnn 

4
ช่วงเวลาการทำนายรอบการคาดการณ์อนุกรมเวลา LSTM
มีวิธีการคำนวณช่วงเวลาการทำนาย (การแจกแจงความน่าจะเป็น) รอบการพยากรณ์อนุกรมเวลาจากเครือข่ายประสาท LSTM (หรือการเกิดขึ้นอีกครั้ง) หรือไม่? ตัวอย่างเช่นฉันคาดการณ์ 10 ตัวอย่างในอนาคต (t + 1 ถึง t + 10) ตามตัวอย่างที่สังเกตได้ 10 รายการล่าสุด (t-9 ถึง t) ฉันคาดว่าการทำนายที่ t + 1 จะมากกว่านี้ แม่นยำกว่าการทำนายที่ t + 10 โดยปกติแล้วหนึ่งอาจวาดแถบข้อผิดพลาดรอบการทำนายเพื่อแสดงช่วงเวลา ด้วยโมเดล ARIMA (ภายใต้สมมติฐานของข้อผิดพลาดแบบกระจายทั่วไป) ฉันสามารถคำนวณช่วงการทำนาย (เช่น 95%) รอบค่าที่ทำนายแต่ละค่า ฉันสามารถคำนวณแบบเดียวกัน (หรือบางอย่างที่เกี่ยวข้องกับช่วงเวลาการทำนาย) จากแบบจำลอง LSTM ได้หรือไม่ ฉันทำงานกับ LSTM ใน Keras / Python …

1
ฉันควรใช้เซลล์ LSTM กี่เซลล์
มีกฎของหัวแม่มือ (หรือกฎจริง) ที่เกี่ยวข้องกับจำนวน LSTM ขั้นต่ำ, สูงสุดและ "สมเหตุสมผล" ที่ฉันควรใช้หรือไม่? โดยเฉพาะฉันเกี่ยวข้องกับBasicLSTMCellจาก TensorFlow และnum_unitsคุณสมบัติ โปรดสมมติว่าฉันมีปัญหาการจำแนกที่กำหนดโดย: t - number of time steps n - length of input vector in each time step m - length of output vector (number of classes) i - number of training examples ตัวอย่างจริงหรือไม่ที่จำนวนตัวอย่างการฝึกอบรมควรมากกว่า: 4*((n+1)*m + m*m)*c ที่cเป็นจำนวนของเซลล์? ฉันใช้สิ่งนี้: จะคำนวณจำนวนพารามิเตอร์ของเครือข่าย …
12 rnn  machine-learning  r  predictive-modeling  random-forest  python  language-model  sentiment-analysis  encoding  machine-learning  deep-learning  neural-network  dataset  caffe  classification  xgboost  multiclass-classification  unbalanced-classes  time-series  descriptive-statistics  python  r  clustering  machine-learning  python  deep-learning  tensorflow  machine-learning  python  predictive-modeling  probability  scikit-learn  svm  machine-learning  python  classification  gradient-descent  regression  research  python  neural-network  deep-learning  convnet  keras  python  tensorflow  machine-learning  deep-learning  tensorflow  python  r  bigdata  visualization  rstudio  pandas  pyspark  dataset  time-series  multilabel-classification  machine-learning  neural-network  ensemble-modeling  kaggle  machine-learning  linear-regression  cnn  convnet  machine-learning  tensorflow  association-rules  machine-learning  predictive-modeling  training  model-selection  neural-network  keras  deep-learning  deep-learning  convnet  image-classification  predictive-modeling  prediction  machine-learning  python  classification  predictive-modeling  scikit-learn  machine-learning  python  random-forest  sampling  training  recommender-system  books  python  neural-network  nlp  deep-learning  tensorflow  python  matlab  information-retrieval  search  search-engine  deep-learning  convnet  keras  machine-learning  python  cross-validation  sampling  machine-learning 

3
มีรูปแบบภาษาที่ดีนอกกรอบสำหรับงูใหญ่หรือไม่?
ฉันกำลังสร้างต้นแบบแอปพลิเคชันและฉันต้องการโมเดลภาษาเพื่อคำนวณความงุนงงในประโยคที่สร้างขึ้น มีรูปแบบภาษาที่ผ่านการฝึกอบรมในภาษาไพ ธ อนที่ฉันสามารถใช้ได้หรือไม่? บางสิ่งที่เรียบง่ายเช่น model = LanguageModel('en') p1 = model.perplexity('This is a well constructed sentence') p2 = model.perplexity('Bunny lamp robert junior pancake') assert p1 < p2 ฉันดูบางกรอบ แต่ไม่สามารถค้นหาสิ่งที่ฉันต้องการ ฉันรู้ว่าฉันสามารถใช้สิ่งที่ชอบ: from nltk.model.ngram import NgramModel lm = NgramModel(3, brown.words(categories='news')) สิ่งนี้ใช้การแจกแจงความน่าจะเป็นที่ดีใน Brown Corpus แต่ฉันกำลังมองหาโมเดลที่สร้างขึ้นอย่างดีในชุดข้อมูลขนาดใหญ่เช่นชุดข้อมูลคำ 1b สิ่งที่ฉันสามารถเชื่อถือได้จริง ๆ ผลลัพธ์สำหรับโดเมนทั่วไป (ไม่เพียงข่าว)
11 python  nlp  language-model  r  statistics  linear-regression  machine-learning  classification  random-forest  xgboost  python  sampling  data-mining  orange  predictive-modeling  recommender-system  statistics  dimensionality-reduction  pca  machine-learning  python  deep-learning  keras  reinforcement-learning  neural-network  image-classification  r  dplyr  deep-learning  keras  tensorflow  lstm  dropout  machine-learning  sampling  categorical-data  data-imputation  machine-learning  deep-learning  machine-learning-model  dropout  deep-network  pandas  data-cleaning  data-science-model  aggregation  python  neural-network  reinforcement-learning  policy-gradients  r  dataframe  dataset  statistics  prediction  forecasting  r  k-means  python  scikit-learn  labels  python  orange  cloud-computing  machine-learning  neural-network  deep-learning  rnn  recurrent-neural-net  logistic-regression  missing-data  deep-learning  autoencoder  apache-hadoop  time-series  data  preprocessing  classification  predictive-modeling  time-series  machine-learning  python  feature-selection  autoencoder  deep-learning  keras  tensorflow  lstm  word-embeddings  predictive-modeling  prediction  machine-learning-model  machine-learning  classification  binary  theory  machine-learning  neural-network  time-series  lstm  rnn  neural-network  deep-learning  keras  tensorflow  convnet  computer-vision 

2
ความถูกต้องของแบบจำลอง 100% สำหรับข้อมูลเกินตัวอย่างหรือไม่?
ฉันเพิ่งเสร็จสิ้นการเรียนรู้ของเครื่องสำหรับหลักสูตร R ใน cognitiveclass.ai และได้เริ่มทำการทดลองด้วยการสุ่ม ฉันสร้างแบบจำลองโดยใช้ไลบรารี่ "randomForest" ในอาร์โมเดลแบ่งเป็นสองคลาสคือดีและไม่ดี ฉันรู้ว่าเมื่อแบบจำลองมีความเหมาะสมมากเกินไปมันทำงานได้ดีกับข้อมูลจากชุดฝึกอบรมของตัวเอง แต่มีข้อมูลที่ไม่อยู่ในเกณฑ์ตัวอย่าง ในการฝึกอบรมและทดสอบแบบจำลองของฉันฉันได้สับและแยกชุดข้อมูลที่สมบูรณ์เป็น 70% สำหรับการฝึกอบรมและ 30% สำหรับการทดสอบ คำถามของฉัน: ฉันได้รับความแม่นยำ 100% จากการทำนายที่ทำไว้ในชุดการทดสอบ มันแย่ใช่ไหม? ดูเหมือนดีเกินกว่าที่จะเป็นจริง วัตถุประสงค์คือการจดจำรูปแบบของคลื่นในสี่ซึ่งกันและกันขึ้นอยู่กับรูปคลื่น คุณสมบัติของชุดข้อมูลนั้นเป็นผลจากต้นทุนของการวิเคราะห์สัญญาณเวลาแบบไดนามิกของรูปคลื่นด้วยรูปคลื่นเป้าหมาย

1
วิธีการคาดการณ์ค่าในอนาคตของขอบฟ้าเวลาด้วย Keras
ฉันเพิ่งสร้างเครือข่ายประสาท LSTMนี้ด้วย Keras import numpy as np import pandas as pd from sklearn import preprocessing from keras.layers.core import Dense, Dropout, Activation from keras.activations import linear from keras.layers.recurrent import LSTM from keras.models import Sequential from matplotlib import pyplot #read and prepare data from datafile data_file_name = "DailyDemand.csv" data_csv = pd.read_csv(data_file_name, delimiter …
โดยการใช้ไซต์ของเรา หมายความว่าคุณได้อ่านและทำความเข้าใจนโยบายคุกกี้และนโยบายความเป็นส่วนตัวของเราแล้ว
Licensed under cc by-sa 3.0 with attribution required.