มีความแตกต่างเล็กน้อยในการสั่งซื้อ bytecode
2 * (i * i)
:
iconst_2
iload0
iload0
imul
imul
iadd
vs 2 * i * i
:
iconst_2
iload0
imul
iload0
imul
iadd
ตั้งแต่แรกเห็นสิ่งนี้ไม่ควรสร้างความแตกต่าง หากมีสิ่งใดรุ่นที่สองจะเหมาะสมที่สุดเนื่องจากใช้สล็อตน้อยกว่าหนึ่งช่อง
ดังนั้นเราจึงจำเป็นที่จะขุดลึกลงไปในระดับที่ต่ำกว่า (JIT) 1
จำไว้ว่า JIT มีแนวโน้มที่จะคลี่ลูปเล็ก ๆ อย่างจริงจัง อันที่จริงเราสังเกต 16x unrolling สำหรับ2 * (i * i)
กรณี:
030 B2: # B2 B3 <- B1 B2 Loop: B2-B2 inner main of N18 Freq: 1e+006
030 addl R11, RBP # int
033 movl RBP, R13 # spill
036 addl RBP, #14 # int
039 imull RBP, RBP # int
03c movl R9, R13 # spill
03f addl R9, #13 # int
043 imull R9, R9 # int
047 sall RBP, #1
049 sall R9, #1
04c movl R8, R13 # spill
04f addl R8, #15 # int
053 movl R10, R8 # spill
056 movdl XMM1, R8 # spill
05b imull R10, R8 # int
05f movl R8, R13 # spill
062 addl R8, #12 # int
066 imull R8, R8 # int
06a sall R10, #1
06d movl [rsp + #32], R10 # spill
072 sall R8, #1
075 movl RBX, R13 # spill
078 addl RBX, #11 # int
07b imull RBX, RBX # int
07e movl RCX, R13 # spill
081 addl RCX, #10 # int
084 imull RCX, RCX # int
087 sall RBX, #1
089 sall RCX, #1
08b movl RDX, R13 # spill
08e addl RDX, #8 # int
091 imull RDX, RDX # int
094 movl RDI, R13 # spill
097 addl RDI, #7 # int
09a imull RDI, RDI # int
09d sall RDX, #1
09f sall RDI, #1
0a1 movl RAX, R13 # spill
0a4 addl RAX, #6 # int
0a7 imull RAX, RAX # int
0aa movl RSI, R13 # spill
0ad addl RSI, #4 # int
0b0 imull RSI, RSI # int
0b3 sall RAX, #1
0b5 sall RSI, #1
0b7 movl R10, R13 # spill
0ba addl R10, #2 # int
0be imull R10, R10 # int
0c2 movl R14, R13 # spill
0c5 incl R14 # int
0c8 imull R14, R14 # int
0cc sall R10, #1
0cf sall R14, #1
0d2 addl R14, R11 # int
0d5 addl R14, R10 # int
0d8 movl R10, R13 # spill
0db addl R10, #3 # int
0df imull R10, R10 # int
0e3 movl R11, R13 # spill
0e6 addl R11, #5 # int
0ea imull R11, R11 # int
0ee sall R10, #1
0f1 addl R10, R14 # int
0f4 addl R10, RSI # int
0f7 sall R11, #1
0fa addl R11, R10 # int
0fd addl R11, RAX # int
100 addl R11, RDI # int
103 addl R11, RDX # int
106 movl R10, R13 # spill
109 addl R10, #9 # int
10d imull R10, R10 # int
111 sall R10, #1
114 addl R10, R11 # int
117 addl R10, RCX # int
11a addl R10, RBX # int
11d addl R10, R8 # int
120 addl R9, R10 # int
123 addl RBP, R9 # int
126 addl RBP, [RSP + #32 (32-bit)] # int
12a addl R13, #16 # int
12e movl R11, R13 # spill
131 imull R11, R13 # int
135 sall R11, #1
138 cmpl R13, #999999985
13f jl B2 # loop end P=1.000000 C=6554623.000000
เราเห็นว่ามี 1 ทะเบียนที่ "หก" ลงบนสแต็ก
และสำหรับ2 * i * i
เวอร์ชั่น:
05a B3: # B2 B4 <- B1 B2 Loop: B3-B2 inner main of N18 Freq: 1e+006
05a addl RBX, R11 # int
05d movl [rsp + #32], RBX # spill
061 movl R11, R8 # spill
064 addl R11, #15 # int
068 movl [rsp + #36], R11 # spill
06d movl R11, R8 # spill
070 addl R11, #14 # int
074 movl R10, R9 # spill
077 addl R10, #16 # int
07b movdl XMM2, R10 # spill
080 movl RCX, R9 # spill
083 addl RCX, #14 # int
086 movdl XMM1, RCX # spill
08a movl R10, R9 # spill
08d addl R10, #12 # int
091 movdl XMM4, R10 # spill
096 movl RCX, R9 # spill
099 addl RCX, #10 # int
09c movdl XMM6, RCX # spill
0a0 movl RBX, R9 # spill
0a3 addl RBX, #8 # int
0a6 movl RCX, R9 # spill
0a9 addl RCX, #6 # int
0ac movl RDX, R9 # spill
0af addl RDX, #4 # int
0b2 addl R9, #2 # int
0b6 movl R10, R14 # spill
0b9 addl R10, #22 # int
0bd movdl XMM3, R10 # spill
0c2 movl RDI, R14 # spill
0c5 addl RDI, #20 # int
0c8 movl RAX, R14 # spill
0cb addl RAX, #32 # int
0ce movl RSI, R14 # spill
0d1 addl RSI, #18 # int
0d4 movl R13, R14 # spill
0d7 addl R13, #24 # int
0db movl R10, R14 # spill
0de addl R10, #26 # int
0e2 movl [rsp + #40], R10 # spill
0e7 movl RBP, R14 # spill
0ea addl RBP, #28 # int
0ed imull RBP, R11 # int
0f1 addl R14, #30 # int
0f5 imull R14, [RSP + #36 (32-bit)] # int
0fb movl R10, R8 # spill
0fe addl R10, #11 # int
102 movdl R11, XMM3 # spill
107 imull R11, R10 # int
10b movl [rsp + #44], R11 # spill
110 movl R10, R8 # spill
113 addl R10, #10 # int
117 imull RDI, R10 # int
11b movl R11, R8 # spill
11e addl R11, #8 # int
122 movdl R10, XMM2 # spill
127 imull R10, R11 # int
12b movl [rsp + #48], R10 # spill
130 movl R10, R8 # spill
133 addl R10, #7 # int
137 movdl R11, XMM1 # spill
13c imull R11, R10 # int
140 movl [rsp + #52], R11 # spill
145 movl R11, R8 # spill
148 addl R11, #6 # int
14c movdl R10, XMM4 # spill
151 imull R10, R11 # int
155 movl [rsp + #56], R10 # spill
15a movl R10, R8 # spill
15d addl R10, #5 # int
161 movdl R11, XMM6 # spill
166 imull R11, R10 # int
16a movl [rsp + #60], R11 # spill
16f movl R11, R8 # spill
172 addl R11, #4 # int
176 imull RBX, R11 # int
17a movl R11, R8 # spill
17d addl R11, #3 # int
181 imull RCX, R11 # int
185 movl R10, R8 # spill
188 addl R10, #2 # int
18c imull RDX, R10 # int
190 movl R11, R8 # spill
193 incl R11 # int
196 imull R9, R11 # int
19a addl R9, [RSP + #32 (32-bit)] # int
19f addl R9, RDX # int
1a2 addl R9, RCX # int
1a5 addl R9, RBX # int
1a8 addl R9, [RSP + #60 (32-bit)] # int
1ad addl R9, [RSP + #56 (32-bit)] # int
1b2 addl R9, [RSP + #52 (32-bit)] # int
1b7 addl R9, [RSP + #48 (32-bit)] # int
1bc movl R10, R8 # spill
1bf addl R10, #9 # int
1c3 imull R10, RSI # int
1c7 addl R10, R9 # int
1ca addl R10, RDI # int
1cd addl R10, [RSP + #44 (32-bit)] # int
1d2 movl R11, R8 # spill
1d5 addl R11, #12 # int
1d9 imull R13, R11 # int
1dd addl R13, R10 # int
1e0 movl R10, R8 # spill
1e3 addl R10, #13 # int
1e7 imull R10, [RSP + #40 (32-bit)] # int
1ed addl R10, R13 # int
1f0 addl RBP, R10 # int
1f3 addl R14, RBP # int
1f6 movl R10, R8 # spill
1f9 addl R10, #16 # int
1fd cmpl R10, #999999985
204 jl B2 # loop end P=1.000000 C=7419903.000000
ที่นี่เราสังเกต "การรั่วไหล" มากขึ้นและเข้าถึงสแต็[RSP + ...]
กได้มากขึ้นเนื่องจากผลลัพธ์ระดับกลางที่จำเป็นต้องเก็บรักษาไว้
ดังนั้นคำตอบสำหรับคำถามนั้นง่าย: 2 * (i * i)
เร็วกว่า2 * i * i
เพราะ JIT สร้างรหัสแอสเซมบลีที่เหมาะสมที่สุดสำหรับกรณีแรก
แต่แน่นอนเป็นที่ชัดเจนว่าทั้งรุ่นแรกและรุ่นที่สองนั้นไม่ดีเลย การวนซ้ำจะได้ประโยชน์จาก vectorization จริง ๆ เนื่องจาก x86-64 CPU ใด ๆ มีการสนับสนุน SSE2 เป็นอย่างน้อย
ดังนั้นจึงเป็นปัญหาของเครื่องมือเพิ่มประสิทธิภาพ อย่างที่มักจะเป็นเช่นนั้นมันคลี่คลายอย่างรุนแรงจนเกินไปและยิงเข้าที่เท้าขณะที่พลาดโอกาสอื่น ๆ
ในความเป็นจริงแล้วซีพียู x86-64 รุ่นใหม่แบ่งคำแนะนำเพิ่มเติมเป็น micro-ops (µops) และด้วยคุณสมบัติต่างๆเช่นการเปลี่ยนชื่อรีจิสเตอร์แคชแคชและบัฟเฟอร์บัฟเฟอร์ ตามคู่มือการเพิ่มประสิทธิภาพของ Agner Fog :
การเพิ่มประสิทธิภาพในการทำงานเนื่องจากแคช canop นั้นค่อนข้างมากหากความยาวคำสั่งเฉลี่ยมากกว่า 4 ไบต์ วิธีการต่อไปนี้ของการปรับการใช้แคช µop ให้เหมาะสมอาจได้รับการพิจารณา:
- ตรวจสอบให้แน่ใจว่าลูปวิกฤตมีขนาดเล็กพอที่จะใส่ลงในแคชแคชได้
- จัดแนวรายการวนซ้ำที่สำคัญที่สุดและรายการฟังก์ชันให้เท่ากับ 32
- หลีกเลี่ยงการวนซ้ำที่ไม่จำเป็น
คำแนะนำหลีกเลี่ยงการที่มีเวลาในการโหลดพิเศษ . .
เกี่ยวกับความเร็วในการโหลดแม้ความเร็ว L1D ที่เร็วที่สุดจะเสียค่าใช้จ่าย 4 รอบการลงทะเบียนพิเศษและ µop ดังนั้นใช่แม้การเข้าถึงหน่วยความจำเพียงไม่กี่ครั้งก็จะส่งผลเสียต่อประสิทธิภาพการทำงานในลูป
แต่กลับไปที่โอกาสการทำให้เป็นเวกเตอร์ - เพื่อดูว่ามันเร็วแค่ไหนเราสามารถรวบรวมแอปพลิเคชั่น C ที่คล้ายกันกับ GCCซึ่งเวกเตอร์ที่ตรงข้ามกับมัน (แสดง AVX2, SSE2 คล้ายกัน) 2 :
vmovdqa ymm0, YMMWORD PTR .LC0[rip]
vmovdqa ymm3, YMMWORD PTR .LC1[rip]
xor eax, eax
vpxor xmm2, xmm2, xmm2
.L2:
vpmulld ymm1, ymm0, ymm0
inc eax
vpaddd ymm0, ymm0, ymm3
vpslld ymm1, ymm1, 1
vpaddd ymm2, ymm2, ymm1
cmp eax, 125000000 ; 8 calculations per iteration
jne .L2
vmovdqa xmm0, xmm2
vextracti128 xmm2, ymm2, 1
vpaddd xmm2, xmm0, xmm2
vpsrldq xmm0, xmm2, 8
vpaddd xmm0, xmm2, xmm0
vpsrldq xmm1, xmm0, 4
vpaddd xmm0, xmm0, xmm1
vmovd eax, xmm0
vzeroupper
ด้วยเวลาทำงาน:
- SSE: 0.24 วินาทีหรือเร็วกว่า 2 เท่า
- AVX: 0.15 วินาทีหรือเร็วกว่า 3 เท่า
- AVX2: 0.08 วินาทีหรือเร็วกว่า 5 เท่า
1 ในการรับ JIT สร้างเอาต์พุตแอสเซมบลีรับการดีบัก JVMและรันด้วย-XX:+PrintOptoAssembly
2 เวอร์ชั่น C ถูกคอมไพล์ด้วย-fwrapv
แฟล็กซึ่งช่วยให้ GCC จัดการกับการโอเวอร์โฟลว์จำนวนเต็มที่ลงนามแล้วซึ่งเป็นส่วนเสริมของทั้งสอง