การเชื่อมต่อระหว่างเครื่องกำเนิดโคลงและเมทริกซ์ตรวจสอบพาริตี้ในรหัส Steane


15

ฉันทำงานผ่าน Mike และ Ike (Nielsen และ Chuang) เพื่อศึกษาด้วยตนเองและฉันกำลังอ่านเกี่ยวกับโคลงโค้ดในบทที่ 10 ฉันเป็นวิศวกรไฟฟ้าที่มีพื้นหลังค่อนข้างมากในทฤษฎีข้อมูลแบบดั้งเดิม แต่ฉัน ไม่เคยมีความเชี่ยวชาญในทฤษฎีการเข้ารหัสพีชคณิต พีชคณิตนามธรรมของฉันเป็นเพียงแค่สิ่งที่อยู่ในภาคผนวก

ฉันคิดว่าฉันเข้าใจการก่อสร้าง Calderbank-Shor-Steane โดยสิ้นเชิงซึ่งมีการใช้รหัสคลาสสิกเชิงเส้นสองชุดเพื่อสร้างรหัสควอนตัม รหัส Steane สร้างขึ้นโดยใช้C1 (รหัสสำหรับ qbit flips) เป็น [7,4,3] รหัส Hamming และC2 (รหัสสำหรับการพลิกเฟส) เป็นรหัสเดียวกัน เมทริกซ์ความเท่าเทียมกันตรวจสอบ [7,4,3] โค้ด:

[000111101100111010101]
]

เครื่องกำเนิดโคลงสำหรับรหัส Steane สามารถเขียนเป็น:

NameOperatorg1IIIXXXXg2IXXIIXXg3XIXIXIXg4IIIZZZZg5IZZIIZZg6ZIZIZIZ
และอื่น ๆที่ไหนเพื่อความมีสติของIIIXXXX=IIIXXXX

มันชี้ให้เห็นในหนังสือว่าX s และZ s อยู่ในตำแหน่งเดียวกับ1 s ในรหัสตรวจสอบความเท่าเทียมกันดั้งเดิม แบบฝึกหัดที่ 10.32 ขอให้ตรวจสอบว่ารหัสสำหรับรหัส Steane มีความเสถียรในชุดนี้ เห็นได้ชัดว่าฉันสามารถเสียบและตรวจสอบด้วยมือ อย่างไรก็ตามมันระบุไว้ว่าด้วยการสังเกตความคล้ายคลึงกันระหว่างเมทริกซ์ตรวจสอบความเท่าเทียมกันและเครื่องกำเนิดไฟฟ้าการออกกำลังกายคือ "ตัวเองชัดเจน"

ฉันเคยเห็นความจริงข้อนี้ในสถานที่อื่น ๆ ( http://www-bcf.usc.edu/~tbrun/Course/lecture21.pdf ) แต่ฉันไม่มีสัญชาตญาณ (อาจเห็นได้ชัด) ฉันคิดว่าฉันขาดการเชื่อมต่อเพิ่มเติมจาก codewords แบบคลาสสิคไปยังรหัสควอนตัมอื่น ๆ นอกเหนือจากที่ใช้ในการจัดทำดัชนีองค์ประกอบพื้นฐานในการสร้างรหัส (เช่นส่วนที่ 10.4.2)

คำตอบ:


6

มีการประชุมและปรีชาญาณอยู่เล็กน้อยที่นี่ซึ่งอาจช่วยสะกดคำได้ -

  • Sign bits กับ {0,1} bits

    ขั้นตอนแรกคือการทำให้บางครั้งเรียกว่า 'great notational shift' และคิดว่าบิต (แม้แต่บิตแบบคลาสสิก) เป็นการเข้ารหัสด้วยสัญญาณ สิ่งนี้มีประโยชน์ที่จะทำถ้าสิ่งที่คุณสนใจเป็นส่วนใหญ่คือความเท่าเทียมกันของสตริงบิตเพราะบิต -flips และ sign-flips ทำหน้าที่เหมือนกัน เราแมป0+1และ11ดังนั้นนั่นคือลำดับของบิต(0,0,1,0,1)จะแสดงด้วยลำดับสัญญาณ(+1,+1,1,+1,1) )

    ความเท่าเทียมกันของลำดับของบิตนั้นสอดคล้องกับผลคูณของสัญญาณ ตัวอย่างเช่นในขณะที่เราจำได้00101=0เป็นการคำนวณแบบ parity เราอาจจำ(+1)(+1)(1)(+1)(1)=+1เป็นการแทนการคำนวณพาริตีเดียวกันโดยใช้เครื่องหมายการประชุม

    การออกกำลังกายคำนวณ 'ความเท่าเทียมกันของ(1,1,+1,1)และ(+1,1,+1,+1) ) สิ่งเหล่านี้เหมือนกันหรือไม่

  • การตรวจสอบพาริตี้โดยใช้บิตสัญญาณ

    ในการประชุมบิต {0,1} การตรวจสอบพาริตี้มีการนำเสนอที่ดีในฐานะ dot-product ของบูลีนเวกเตอร์สองบูลีนเพื่อให้เราสามารถตระหนักถึงการคำนวณพาริตีที่ซับซ้อน โดยการเปลี่ยนไปใช้บิตสัญญาณเราได้สูญเสียการเชื่อมต่อกับพีชคณิตเชิงเส้นอย่างหลีกเลี่ยงไม่ได้ในระดับสัญกรณ์เพราะเรากำลังใช้ผลิตภัณฑ์แทนผลรวม ในระดับการคำนวณเพราะนี่เป็นเพียงการเปลี่ยนแปลงในสัญกรณ์เราไม่ต้องกังวลมากเกินไป แต่ในระดับคณิตศาสตร์ที่บริสุทธิ์ตอนนี้เราต้องคิดอีกครั้งเกี่ยวกับสิ่งที่เรากำลังทำกับเมทริกซ์ตรวจสอบความเท่าเทียมกัน

    เมื่อเราใช้เครื่องหมายบิตเราอาจยังคงแทน 'เมทริกซ์ตรวจสอบความเท่าเทียมกัน' เป็นเมทริกซ์ที่ 0 และ 1 แทนสัญญาณ± 1 ทำไม? คำตอบหนึ่งก็คือเวกเตอร์แถวที่อธิบายการตรวจสอบพาริตี้ของบิตเป็นประเภทที่แตกต่างจากลำดับของบิตตัวเอง: มันอธิบายการทำงานของข้อมูลไม่ใช่ตัวข้อมูลเอง ตอนนี้อาร์เรย์ของ 0 และ 1 ต้องการเพียงการตีความที่แตกต่าง - แทนค่าสัมประสิทธิ์เชิงเส้นเป็นผลรวมพวกมันสอดคล้องกับเลขชี้กำลังในผลิตภัณฑ์ ถ้าเรามีเครื่องหมายบิต(s1,s2,,sn){1,+1}nและเราต้องการที่จะคำนวณการตรวจสอบความเท่าเทียมกันให้โดยแถวเวกเตอร์(b1,b2,,bn){0,1}การตรวจสอบความเท่าเทียมกันคือการคำนวณแล้วโดย

    (s1)b1(s2)b2[](sn)bn{1,+1},
    ที่จำได้ว่าs0=1สำหรับทุกssเช่นเดียวกับ {0,1} -bits คุณสามารถนึกถึงแถว(b1,b2,,bn)เป็นเพียงแค่การแทน 'หน้ากาก' ซึ่งกำหนดว่าบิตsjให้การสนับสนุนที่ไม่น่าสนใจสำหรับความเท่าเทียมกัน การคำนวณ

    การออกกำลังกาย คำนวณผลมาจากการตรวจสอบความเท่าเทียมกัน(0,1,0,1,0,1,0)บน(+1,1,1,1,1,+1,1) )

  • ค่าลักษณะเฉพาะเป็นพาริตี้

    เหตุผลที่ว่าทำไมเราจะต้องการบิตการเข้ารหัสสัญญาณในทฤษฎีควอนตัมข้อมูลเป็นเพราะวิธีการที่ข้อมูลจะถูกเก็บไว้ในรัฐควอนตัม - หรือมากกว่าไปยังจุดที่วิธีการที่เราสามารถอธิบายการเข้าถึงข้อมูลที่ โดยเฉพาะเราอาจพูดมากเกี่ยวกับพื้นฐานมาตรฐาน แต่เหตุผลที่ว่าทำไมมันมีความหมายเป็นเพราะเราสามารถดึงข้อมูลว่าด้วยการวัดของสังเกต

    สังเกตได้เพียงแค่นี้ก็อาจจะเป็นโปรเจ็กเตอร์|11|ที่ไหน|0มีค่าลักษณะเฉพาะ 0 และ|1มีค่าลักษณะเฉพาะ 1 แต่มักจะเป็นประโยชน์ในการอธิบายสิ่งต่าง ๆ ในรูปแบบของเมทริกซ์ Pauli ในกรณีนี้เราจะพูดคุยเกี่ยวกับพื้นฐานมาตรฐานในรูปแบบ eigenbasis ของตัวดำเนินการZซึ่งในกรณีนี้เรามี|0เป็น +1-eigenvector ของ Zและ|1เป็น -1-eigenvector ของ Z

    ดังนั้น: เรามีการเกิดขึ้นของบิตสัญญาณ (ในกรณีนี้ค่าลักษณะเฉพาะ) เป็นตัวแทนข้อมูลที่เก็บไว้ใน qubit และยังดีกว่าเราสามารถทำสิ่งนี้ในลักษณะที่ไม่เฉพาะเจาะจงกับมาตรฐานพื้นฐาน: เราสามารถพูดคุยเกี่ยวกับข้อมูลที่จัดเก็บในพื้นฐาน 'คอนจูเกต' เพียงแค่พิจารณาว่ารัฐนั้นเป็น eigenstate ของXหรือไม่ . แต่ยิ่งไปกว่านั้นเราสามารถพูดคุยเกี่ยวกับค่าลักษณะเฉพาะของตัวดำเนินการ Pauli แบบหลาย qubitเป็นการเข้ารหัสparitiesของหลายบิต - ผลิตภัณฑ์เมตริกซ์ZZแสดงถึงวิธีการเข้าถึงผลิตภัณฑ์ของสัญลักษณ์บิต, that is to say the parity, of two qubits in the standard basis. In this sense, the eigenvalue of a state with respect to a multi-qubit Pauli operator — if that eigenvalue is defined (i.e. in the case that the state is an eigenvalue of the Pauli operator) — is in effect the outcome of a parity calculation of information stored in some choice of basis for each of the qubits.

    การออกกำลังกาย ความเท่าเทียมกันของรัฐคืออะไร|11เทียบกับZZเหรอ? รัฐนี้มีความเท่าเทียมกันที่กำหนดไว้อย่างดีเกี่ยวกับXXหรือไม่?

    การออกกำลังกาย ความเท่าเทียมกันของรัฐคืออะไร|+เทียบกับXX ? รัฐนี้มีความเท่าเทียมกันที่กำหนดไว้อย่างดีเกี่ยวกับZZหรือไม่?

    การออกกำลังกาย ความเท่าเทียมกันของ|คืออะไร Φ += 1|Φ+=12(|00+|11) with respect to ZZ and XX?

  • Stabiliser generators as parity checks.

    We are now in a position to appreciate the role of stabiliser generators as being analogous to a parity check matrix. Consider the case of the 7-qubit CSS code, with generators

    GeneratorTensor factors1234567g1XXXXg2XXXXg3XXXXg4ZZZZg5ZZZZg6ZZZZ
    I've omitted the identity tensor factors above, as one might sometimes omit the 0s from a {0,1} matrix, and for the same reason: in a given stabiliser operator, the identity matrix corresponds to a tensor factor which is not included in the 'mask' of qubits for which we are computing the parity. For each generator, we are only interested in those tensor factors which are being acted on somehow, because those contribute to the parity outcome.

    Now, the 'codewords' (the encoded standard basis states) of the 7-qubit CSS code are given by

    |0L|0000000+|0001111+|0110011+|0111100+|1010101+|1011010+|1100110+|1101001=yC|y,|1L|1111111+|1110000+|1001100+|1000011+|0101010+|0100101+|0011001+|0010110=yC|y1111111,
    where C is the code generated by the bit-strings 0001111, 0110011, and 1010101. Notably, these bit-strings correspond to the positions of the X operators in the generators g1, g2, and g3. While those are stabilisers of the code (and represent parity checks as I've suggested above), we can also consider their action as operators which permute the standard basis. In particular, they will permute the elements of the code C, so that the terms involved in |0L and |1L will just be shuffled around.

    The generators g4, g5, and g6 above are all describing the parities of information encoded in standard basis states. The encoded basis states you are given are superpositions of codewords drawn from a linear code, and those codewords all have even parity with respect to the parity-check matrix from that code. As g4 through g6 just describe those same parity checks, it follows that the eigenvalue of the encoded basis states is +1 (corresponding to even parity).

    This is the way in which

    'with the observation about the similarities between the parity check matrix and the generator the exercise is "self evident"'

    — because the stabilisers either manifestly permute the standard basis terms in the two 'codewords', or manifestly are testing parity properties which by construction the codewords will have.

  • Moving beyond codewords

    The list of generators in the table you provide represent the first steps in a powerful technique, known as the stabiliser formalism, in which states are described using no more or less than the parity properties which are known to hold of them.

    Some states, such as standard basis states, conjugate basis states, and the perfectly entangled states |Φ+|00+|11 and |Ψ|01|10 can be completely characterised by their parity properties. (The state |Φ+ is the only one which is a +1-eigenvector of XX and ZZ; the state |Ψ is the only one which is a −1-eigenvector of both these operators.) These are known as stabiliser states, and one can consider how they are affected by unitary transformations and measurements by tracking how the parity properties themselves transform. For instance, a state which is stabilised by XX before applying a Hadamard on qubit 1, will be stabilised by ZX afterwards, because (HI)(XX)(HI)=ZX. Rather than transform the state, we transform the parity property which we know to hold of that state.

    You can use this also to characterise how subspaces characterised by these parity properties will transform. For instance, given an unknown state in the 7-qubit CSS code, I don't know enough about the state to tell you what state you will get if you apply Hadamards on all of the qubits, but I can tell you that it is stabilised by the generators gj=(H7)gj(H7), which consist of

    GeneratorTensor factors1234567g1ZZZZg2ZZZZg3ZZZZg4XXXXg5XXXXg6XXXX
    This is just a permutation of the generators of the 7-qubit CSS code, so I can conclude that the result is also a state in that same code.

    There is one thing about the stabiliser formalism which might seem mysterious at first: you aren't really dealing with information about the states that tells you anything about how they expand as superpositions of the standard basis. You're just dealing abstractly with the generators. And in fact, this is the point: you don't really want to spend your life writing out exponentially long superpositions all day, do you? What you really want are tools to allow you to reason about quantum states which require you to write things out as linear combinations as rarely as possible, because any time you write something as a linear combination, you are (a) making a lot of work for yourself, and (b) preferring some basis in a way which might prevent you from noticing some useful property which you can access using a different basis.

    Still: it is sometimes useful to reason about 'encoded states' in error correcting codes — for instance, in order to see what effect an operation such as H7 might have on the codespace of the 7-qubit code. What should one do instead of writing out superpositions?

    The answer is to describe these states in terms of observables — in terms of parity properties — to fix those states. For instance, just as |0 is the +1-eigenstate of Z, we can characterise the logical state |0L of the 7-qubit CSS code as the +1-eigenstate of

    ZL=ZZZZZZZ
    and similarly, |1L as the −1-eigenstate of ZL. (It is important that ZL=Z7 commutes with the generators {g1,,g6}, so that it is possible to be a +1-eigenstate of ZL at the same time as having the parity properties described by those generators.) This also allows us to move swiftly beyond the standard basis: using the fact that X7 anti commutes with Z7 the same way that X anti commutes with Z, and also as X7 commutes with the generators gi, we can describe |+L as being the +1-eigenstate of
    XL=XXXXXXX,
    and similarly, |L as the −1-eigenstate of XL. We may say that the encoded standard basis is, in particular, encoded in the parities of all of the qubits with respect to Z operators; and the encoded 'conjugate' basis is encoded in the parities of all of the qubits with respect to X operators.

    By fixing a notion of encoded operators, and using this to indirectly represent encoded states, we may observe that

    (H7)XL(H7)=ZL,(H7)ZL(H7)=XL,
    which is the same relation as obtains between X and Z with respect to conjugation by Hadamards; which allows us to conclude that for this encoding of information in the 7-qubit CSS code, H7 not only preserves the codespace but is an encoded Hadamard operation.

Thus we see that the idea of observables as a way of describing information about a quantum states in the form of sign bits — and in particular tensor products as a way of representing information about parities of bits — plays a central role in describing how the CSS code generators represent parity checks, and also in how we can describe properties of error correcting codes without reference to basis states.


After having read this I still don't get how it is obvious that X4X5X6X7 (I take this example) stabilize the code space. In your answer you seemed to use the fact you know what the code space looks like noticing that X4X5X6X7 applied on |0L gives |1L. What perturbs me is that if we talked about Z4Z5Z6Z7 operators, I would directly see the link with parity check matrix as their eigenvalues give the parity of the bits 4 to 7 exactly like the first line of parity check matrix. But the X operator are not diagonal in the 0/1 basis. So I don't get...
StarBucK

While it isn't ideal to fuss with the state-vectors for the code-words, from the expansion above we can see that X4X5X6X7 permutes the standard basis components of |0L, and similarly for the standard-basis components of |1L. While this picture involves non-trivial transformations of parts of the state, the overall effect is stabilisation. To see how to see the X stabilisers as parity-checks, the way you do with Z-stabilisers, maybe you could consider the effect of the X stabilisers of |+L and |L, and in the conjugate basis.
Niel de Beaudrap

Thank you for your answer. Ok so to be sure: do you agree that if we don't look at the basis of the code space but only at the parity check matrix and the generators, the only thing we can directly understand is the fact the Z generator can be read in the parity check matrix. But for the X generator even if appears they follow a similar structure it is not obvious to understand why without further calculation ? Because in the Nielsen&Chuang the way it is presented is as if it was obvious. So I wondered if I missed something ?
StarBucK

2

One way that you could construct what the codeword is is to project on the +1 eigenspace of the generators,

|C1=126(i=16(I+gi))|0000000.
Concentrate, to start with, one the first 3 generators
(I+g1)(I+g2)(I+g3).
If you expand this out, you'll see that it creates all the terms in the group (I,g1,g2,g3,g1g2,g1g3,g2g3,g1g2g3). Corresponding it to binary strings, the action of multiplying two terms (since X2=I) is just like addition modulo 2. So, contained within the code are all of the words generated by the parity check matrix (and this is a group, with group operation of addition modulo 2).

Now, if you multiply by one of the X stabilizers, that's like doing the addition modulo 2 on the corresponding bit strings. But, because we've already generated the group, by definition every group element is mapped to another (unique) group element. In other words, if I do

g1×{I,g1,g2,g3,g1g2,g1g3,g2g3,g1g2g3}={g1I,g1g2,g1g3,g2,g3,g1g2g3,g2g3},
I get back the set I started with (using g12=I, and the commutation of the stabilizers), and therefore I'm projecting onto the same state. Hence, the state is stabilized by g1 to g3.

You can effectively make the same argument for g4 to g6. I prefer to think about first applying a Hadamard to every qubit, so the Xs are changed to Zs and vice versa. The set of stabilizers are unchanged, so the code is unchanged, but the Z stabilizer is mapped to an X stabilizer, about which we have already argued.


1

What follows perhaps doesn't exactly answer your question, but instead aims to provide some background to help it become as 'self-evident' as your sources claim.

The Z operator has eigenstates |0 (with eigenvalue +1) and |1 (with eigenvalue 1). The ZZ operator on two qubits therefore has eigenstates

|00,|01,|10,|11
. The eigenvalues for these depend on the parity of the bit strings. For example, with |00 we multiply the +1 eigenvalues of the individual Z operators to get +1. For |11 we multiply the 1 eigenvalues together and also get +1 for ZZ. So both these even parity bit strings have eigenvalue +1, as does any superposition of them. For both odd parity states (|01 and |10) we must multiply a +1 with a 1, and get a 1 eigenvalue for ZZ.

Note also that superpositions of bit strings with fixed parity (such as some α|00+β|00) are also eigenstates, and have the eigenvalue associated with their parity. So measuring ZZ would not collapse such a superposition.

This analysis remains valid as we go to higher number of qubits. So if we want to know about the parity of qubits 1, 3, 5, and 7 (to pick a pertinent example), we could use the operator ZIZIZIZ. If we measure this and get the outcome +1, we know that this subset of qubits has a state represented by an even parity bit string, or a superposition thereof. If we get 1, we know that it is an odd parity state.

This allows us to write the [7,4,3] Hamming code using the notation of quantum stabilizer codes. Each parity check is turned into a stabilizer generator which has I on every qubit not involved in the check, and Z on every qubit that is. The resulting code will protect against errors that anticommute with Z (and therefore have the effect of flipping bits).

Of course, qubits do not restrict us to only working in the Z basis. We could encode our qubits for a classical Hamming code in the |+ and | states instead. These are the eigenstates of X, so you just need to replace Z with X in everything I've said to see how this kind of code works. It would protect against errors that anticommute with X (and so have the effect of flipping phase).

The magic of the Steane code, of course, is that it does both at the same time and protects against everything.

โดยการใช้ไซต์ของเรา หมายความว่าคุณได้อ่านและทำความเข้าใจนโยบายคุกกี้และนโยบายความเป็นส่วนตัวของเราแล้ว
Licensed under cc by-sa 3.0 with attribution required.