คำถามติดแท็ก diffusion

2
Crank-Nicolson เป็นโครงร่างการแยกย่อยที่เสถียรสำหรับสมการปฏิกิริยา - การแพร่ - การพา (การพาความร้อน) หรือไม่?
ฉันไม่คุ้นเคยกับรูปแบบการแยกย่อยทั่วไปสำหรับ PDE ฉันรู้ว่า Crank-Nicolson เป็นรูปแบบที่ได้รับความนิยมในการลดทอนสมการการกระจาย ยังเป็นตัวเลือกที่ดีสำหรับคำศัพท์การพา? ฉันสนใจการแก้สมการปฏิกิริยา - การแพร่ -การพา ∂u∂t+∇⋅(vu−D∇u)=f∂u∂t+∇⋅(vu−D∇u)=f\frac{\partial u}{\partial t} + \nabla \cdot \left( \boldsymbol{v} u - D\nabla u \right) = f โดยที่คือสัมประสิทธิ์การแพร่ของสสารและคือความเร็วDDDuuuvv\boldsymbol{v} สำหรับการสมัครเฉพาะของฉันสมการสามารถเขียนได้ในรูปแบบ ∂u∂t=D∂2u∂x2Diffusion+v∂u∂xAdvection (convection)+f(x,t)Reaction∂u∂t=D∂2u∂x2⏟Diffusion+v∂u∂x⏟Advection (convection)+f(x,t)⏟Reaction\frac{\partial u}{\partial t} = \underbrace{D\frac{\partial^2 u}{\partial x^2}}_{\textrm{Diffusion}} + \underbrace{\boldsymbol{v}\frac{\partial u}{\partial x}}_{\textrm{Advection (convection)}} + \underbrace{f(x,t)}_{\textrm{Reaction}} นี่คือโครงร่างข้อเหวี่ยง - นิโคลสันที่ฉันสมัคร un+1j−unjΔt=D[1−β(Δx)2(unj−1−2unj+unj+1)+β(Δx)2(un+1j−1−2un+1j+un+1j+1)]+v[1−α2Δx(unj+1−unj−1)+α2Δx(un+1j+1−un+1j−1)]+f(x,t)ujn+1−ujnΔt=D[1−β(Δx)2(uj−1n−2ujn+uj+1n)+β(Δx)2(uj−1n+1−2ujn+1+uj+1n+1)]+v[1−α2Δx(uj+1n−uj−1n)+α2Δx(uj+1n+1−uj−1n+1)]+f(x,t)\frac{u_{j}^{n+1} - u_{j}^{n}}{\Delta t} …

1
การอนุรักษ์ปริมาณทางกายภาพเมื่อใช้เงื่อนไขขอบเขต Neumann นำไปใช้กับสมการการแพร่ - แพร่
ฉันไม่เข้าใจพฤติกรรมที่แตกต่างกันของสมการการแพร่ - การกระจายเมื่อฉันใช้เงื่อนไขขอบเขตที่แตกต่างกัน แรงจูงใจของฉันคือการจำลองปริมาณทางกายภาพที่แท้จริง (ความหนาแน่นของอนุภาค) ภายใต้การแพร่และการพาความร้อน ความหนาแน่นของอนุภาคควรได้รับการอนุรักษ์ในการตกแต่งภายในเว้นแต่จะไหลออกมาจากขอบ โดยตรรกะนี้หากฉันบังคับใช้เงื่อนไขขอบเขตของ Neumann จุดสิ้นสุดของระบบเช่น∂ϕ∂x=0∂ϕ∂x=0\frac{\partial \phi}{\partial x}=0(ทางด้านซ้ายและด้านขวา) จากนั้นระบบควรจะ"ปิด"เช่นถ้าฟลักซ์ที่ขอบเขตเป็นศูนย์จากนั้นไม่มีอนุภาคใด ๆ สำหรับการจำลองด้านล่างทั้งหมดที่ผมได้นำมาใช้ต่อเนื่อง Crank-Nicolson สมพา-การแพร่กระจายและการจำลอง∂ϕ∂x=0∂ϕ∂x=0\frac{\partial \phi}{\partial x}=0เงื่อนไขขอบเขต อย่างไรก็ตามสำหรับแถวแรกและแถวสุดท้ายของเมทริกซ์ (แถวเงื่อนไขขอบเขต) ฉันอนุญาตให้ββ\betaสามารถเปลี่ยนแปลงได้โดยอิสระจากค่าภายใน สิ่งนี้ทำให้จุดสิ้นสุดมีความชัดเจน ด้านล่างนี้ฉันพูดถึงการกำหนดค่าที่แตกต่างกัน 4 แบบหนึ่งในนั้นคือสิ่งที่ฉันคาดไว้ ในตอนท้ายฉันพูดคุยเกี่ยวกับการปฏิบัติ จำกัด การแพร่เท่านั้น ที่นี่ข้อกำหนดการปิดจะถูกปิดโดยการตั้งค่าความเร็วเป็นศูนย์ การแพร่กระจายเท่านั้นที่มี = 0.5 (Crank-Niscolson) ทุกจุดββ\boldsymbol{\beta} ปริมาณไม่ได้รับการอนุรักษ์ตามที่สามารถเห็นได้จากการลดพื้นที่พัลส์ การกระจัดกระจายเท่านั้นโดยมี = 0.5 (Crank-Niscolson) ที่จุดตกแต่งภายในและ = 1 (โดยนัย) ที่ขอบเขตบีตาββ\boldsymbol{\beta}ββ\boldsymbol{\beta} โดยใช้สมการโดยปริยายอย่างเต็มที่ในขอบเขตที่ผมประสบความสำเร็จในสิ่งที่ผมคาดหวัง: ไม่มีอนุภาคหลบหนี คุณสามารถเห็นสิ่งนี้ได้โดยพื้นที่ที่ถูกอนุรักษ์ไว้เมื่ออนุภาคกระจายตัว ทำไมการเลือกที่จุดขอบเขตจึงมีอิทธิพลต่อฟิสิกส์ของสถานการณ์ นี่เป็นข้อบกพร่องหรือคาดหวังββ\beta …
โดยการใช้ไซต์ของเรา หมายความว่าคุณได้อ่านและทำความเข้าใจนโยบายคุกกี้และนโยบายความเป็นส่วนตัวของเราแล้ว
Licensed under cc by-sa 3.0 with attribution required.