ฉันกำลังทำการทดลองเชิงตัวเลขซึ่งประกอบด้วยการสุ่มตัวอย่างการแจกแจงแบบลอกล็อกและพยายามประเมินช่วงเวลาโดยสองวิธี:
- ดูค่าเฉลี่ยตัวอย่างของ
- การประมาณและโดยใช้ตัวอย่างหมายถึงแล้วใช้ความจริงที่ว่าสำหรับการแจกแจงแบบปกติเรามี2/2)
คำถามคือ :
ฉันพบการทดลองว่าวิธีที่สองมีประสิทธิภาพดีกว่าวิธีแรกเมื่อฉันเก็บจำนวนตัวอย่างไว้และเพิ่มโดยปัจจัยบางตัว T มีคำอธิบายง่ายๆสำหรับข้อเท็จจริงนี้หรือไม่?
ฉันกำลังแนบรูปที่แกน x คือ T ในขณะที่แกน y คือค่าของเปรียบเทียบค่าที่แท้จริงของ (เส้นสีส้ม) ไปยังค่าที่ประมาณไว้ วิธีที่ 1 - จุดสีฟ้าวิธีที่ 2 - จุดสีเขียว แกน y อยู่ในระดับล็อกE [ X 2 ] = exp ( 2 μ + 2 σ 2 )
แก้ไข:
ด้านล่างเป็นรหัส Mathematica ขั้นต่ำเพื่อสร้างผลลัพธ์สำหรับหนึ่ง T พร้อมกับเอาต์พุต:
ClearAll[n,numIterations,sigma,mu,totalTime,data,rmomentFromMuSigma,rmomentSample,rmomentSample]
(* Define variables *)
n=2; numIterations = 10^4; sigma = 0.5; mu=0.1; totalTime = 200;
(* Create log normal data*)
data=RandomVariate[LogNormalDistribution[mu*totalTime,sigma*Sqrt[totalTime]],numIterations];
(* the moment by theory:*)
rmomentTheory = Exp[(n*mu+(n*sigma)^2/2)*totalTime];
(*Calculate directly: *)
rmomentSample = Mean[data^n];
(*Calculate through estimated mu and sigma *)
muNumerical = Mean[Log[data]]; (*numerical \[Mu] (gaussian mean) *)
sigmaSqrNumerical = Mean[Log[data]^2]-(muNumerical)^2; (* numerical gaussian variance *)
rmomentFromMuSigma = Exp[ muNumerical*n + (n ^2sigmaSqrNumerical)/2];
(*output*)
Log@{rmomentTheory, rmomentSample,rmomentFromMuSigma}
เอาท์พุท:
(*Log of {analytic, sample mean of r^2, using mu and sigma} *)
{140., 91.8953, 137.519}
ด้านบนผลลัพธ์ที่สองคือค่าเฉลี่ยตัวอย่างของซึ่งต่ำกว่าผลลัพธ์สองรายการ