ขั้นตอนที่เกี่ยวข้องในการใช้ตัวกรองคาลมานในแบบจำลองพื้นที่ของรัฐมีอะไรบ้าง
ฉันเคยเห็นสูตรที่แตกต่างกันสองสามอย่างแต่ฉันไม่แน่ใจเกี่ยวกับรายละเอียด ตัวอย่างเช่นCowpertwaitเริ่มต้นด้วยชุดของสมการนี้:
θt=Gtθt-1+wt
Yเสื้อ= F'เสื้อθเสื้อ+ vเสื้อ
θเสื้อ= Gเสื้อθt - 1+ wเสื้อ
โดยที่และ ,เป็นค่าประมาณที่ไม่รู้จักของเราและเป็นค่าที่สังเกตได้w t ∼ N ( 0 , W t ) θ t y tθ0∼ N( ม0, C0) , vเสื้อ∼ N( 0 , Vเสื้อ)Wเสื้อ∼ N( 0 , Wเสื้อ)θเสื้อYเสื้อ
Cowpertwait กำหนดการแจกแจงที่เกี่ยวข้อง (ก่อนความน่าจะเป็นและการกระจายหลังตามลำดับ):
y t | θ t ∼ N ( F
θเสื้อ| Dt - 1∼ N( กเสื้อ, ร.ต.เสื้อ)
θt| Dt∼N(mt,Ct)Yเสื้อ| θเสื้อ∼ N( F'เสื้อθเสื้อ, โวลต์เสื้อ)
θเสื้อ| Dเสื้อ∼ N( มเสื้อ, Cเสื้อ)
กับ
aเสื้ออีเสื้อฉเสื้อAเสื้อ= Gเสื้อม.t - 1,Rเสื้อ=yเสื้อ- ฉเสื้อ,ม.เสื้อ= F'เสื้อaเสื้อ,Qเสื้อ= Rเสื้อFเสื้อQ- 1เสื้อ,คเสื้อ= Gเสื้อคt - 1G'เสื้อ+ Wเสื้อ= aเสื้อ+ Aเสื้ออีเสื้อ= F'เสื้อRเสื้อFเสื้อ+ Vเสื้อ= Rเสื้อ- กเสื้อQเสื้อA'เสื้อ
โดยวิธีการที่หมายถึงการกระจายของกำหนดค่าสังเกตถึงT-1สัญกรณ์ที่ง่ายกว่าคือแต่ฉันจะยึดติดกับสัญกรณ์ของ Cowpertwait θ t y t - 1 θ t | t - 1θเสื้อ| Dt - 1θเสื้อYt - 1θt | t - 1
ผู้เขียนยังอธิบายการทำนายสำหรับในแง่ของความคาดหวัง:Yt + 1| Dเสื้อ
E[ yt + 1| Dเสื้อ] = E[ F't + 1θt + 1+ vt + 1| Dเสื้อ] = F't + 1E[ θt + 1| Dเสื้อ] = F't + 1at + 1= ft + 1
เท่าที่ฉันเข้าใจขั้นตอนเหล่านี้เป็นอย่างไรโปรดแจ้งให้เราทราบหากมีข้อผิดพลาดหรือความไม่แน่นอน:
- เราเริ่มต้นด้วย , , ที่อยู่, เราเดาค่าสำหรับประมาณการของเรา{0} C 0 θ 0ม.0ค0θ0
- เราคาดการณ์ค่าสำหรับ{0} ว่าควรจะเท่ากับซึ่งเป็น{1} เป็นที่รู้จักกันตั้งแต่{0} f 1 FY1| D0ฉ1a1a1=G1m0F'1a1a1a1= G1ม.0
- เมื่อเรามีการคาดการณ์ของเราสำหรับเราคำนวณข้อผิดพลาด{1} e 1 = y 1 - f 1Y1| D0อี1= y1- ฉ1
- ข้อผิดพลาดถูกนำมาใช้ในการคำนวณการกระจายหลังที่ต้องและ{1} จะได้รับเป็นผลรวมถ่วงน้ำหนักของก่อนค่าเฉลี่ยและข้อผิดพลาด:{1}อี1θ1| D1ม.1ค1ม. 1a1+ A1อี1
- ในการย้ำต่อไปนี้เราเริ่มต้นด้วยการทำนายเป็นในขั้นตอนที่ 1. ในกรณีนี้{2} เนื่องจากและคือความคาดหวังของที่เราคำนวณไปแล้วในขั้นตอนก่อนหน้าจากนั้นเราสามารถคำนวณข้อผิดพลาดและค่าเฉลี่ยของการกระจายหลังเหมือนก่อนY2| D1ฉ2= F'2a2a2= G2ม.1ม. 1θ1| D1อี2θ2| D2
ฉันคิดว่าการคำนวณการกระจายหลังเป็นสิ่งที่บางคนเรียกขั้นตอนการอัปเดตและการใช้ความคาดหวังของเป็นขั้นตอนการทำนายθเสื้อ| Dเสื้อYt + 1| Dเสื้อ
เพื่อประโยชน์ของความกะทัดรัดฉันละเว้นขั้นตอนในการคำนวณเมทริกซ์ความแปรปรวนร่วม
ฉันคิดถึงอะไรเหรอ? คุณรู้วิธีที่ดีกว่าในการอธิบายเรื่องนี้หรือไม่? ฉันคิดว่ามันค่อนข้างยุ่งดังนั้นอาจมีวิธีที่ชัดเจนกว่า