คำถามติดแท็ก cross-validation

หัก ณ ที่จ่ายซ้ำชุดย่อยของข้อมูลในระหว่างการปรับแบบจำลองเพื่อวัดประสิทธิภาพของแบบจำลองในชุดย่อยข้อมูลที่ถูกระงับ

4
Shao ใช้ผลการตรวจสอบไขว้แบบลาก่อนออกเมื่อใด
ในบทความการเลือกโมเดลเชิงเส้นโดย Jun-Shao แสดงให้เห็นว่าสำหรับปัญหาของการเลือกตัวแปรในการถดถอยเชิงเส้นหลายตัวแปรวิธีของการตรวจสอบความถูกต้องแบบลาออกครั้งเดียว (LOOCV) คือ 'ไม่สอดคล้องเชิงเส้นกำกับ' ในภาษาอังกฤษธรรมดามีแนวโน้มที่จะเลือกรุ่นที่มีตัวแปรมากเกินไป ในการศึกษาแบบจำลอง Shao แสดงให้เห็นว่าแม้การสำรวจเพียง 40 ครั้งเท่านั้น LOOCV สามารถใช้เทคนิคการตรวจสอบข้ามแบบอื่นได้ต่ำกว่า บทความนี้ค่อนข้างขัดแย้งและไม่สนใจ (10 ปีหลังจากการตีพิมพ์เคมีของเพื่อนร่วมงานของฉันไม่เคยได้ยินเรื่องนี้มาก่อนและมีความสุขที่ใช้ LOOCV สำหรับการเลือกตัวแปร ... ) นอกจากนี้ยังมีความเชื่อ (ฉันมีความผิดในเรื่องนี้) ว่าผลลัพธ์ของมันขยายออกไปค่อนข้าง จำกัด ขอบเขตดั้งเดิม จากนั้นคำถาม: ผลลัพธ์เหล่านี้จะขยายไปไกลแค่ไหน? พวกเขาจะใช้กับปัญหาต่อไปนี้? การเลือกตัวแปรสำหรับการถดถอยโลจิสติก / GLM? การเลือกตัวแปรสำหรับการจำแนกประเภท Fisher LDA? การเลือกตัวแปรใช้ SVM พร้อมพื้นที่เคอร์เนล จำกัด (หรือไม่ จำกัด )? เปรียบเทียบรุ่นในการจำแนกประเภทพูดว่า SVM ใช้เมล็ดที่แตกต่างกันหรือไม่ เปรียบเทียบแบบจำลองในการถดถอยเชิงเส้นพูดเปรียบเทียบ MLR กับ Ridge Regression …

5
มากเกินไป: ไม่มีกระสุนเงิน?
ความเข้าใจของฉันคือว่าแม้เมื่อไปข้ามการตรวจสอบและการเลือกรูปแบบวิธีการที่เหมาะสม, overfitting จะเกิดขึ้นถ้าค้นหาหนึ่งสำหรับรูปแบบที่ยากพอว่าถ้าผู้ใดมีข้อ จำกัด เรียกเก็บกับความซับซ้อนของโมเดลระยะเวลา นอกจากนี้บ่อยครั้งที่ผู้คนพยายามเรียนรู้บทลงโทษเกี่ยวกับความซับซ้อนของแบบจำลองจากข้อมูลที่ทำลายการป้องกันที่พวกเขาสามารถให้ได้ คำถามของฉันคือ: ความจริงเท่าไหร่ที่มีต่องบข้างต้น? ผมมักจะได้ยิน practicioners ML กล่าวว่า " ใน บริษัท ของฉัน / ห้องปฏิบัติการเราพยายามทุกรูปแบบที่มีอยู่ (เช่นจากห้องสมุดเช่นเครื่องหมายหรือscikit เรียนรู้ ) เพื่อดูที่หนึ่งงานที่ดีที่สุด " ฉันมักจะเถียงว่าวิธีการนี้สามารถทำให้ได้อย่างง่ายดายแม้ว่าพวกเขาจะจริงจังเกี่ยวกับการตรวจสอบข้ามและเก็บชุดที่ค้างไว้ในทางที่พวกเขาต้องการ ยิ่งพวกเขาค้นหายากเท่าไหร่ก็จะยิ่งมีโอกาสมากขึ้นเท่านั้น ในคำอื่น ๆมากกว่าการเพิ่มประสิทธิภาพเป็นปัญหาที่แท้จริงและมีการวิเคราะห์พฤติกรรมที่ไม่สามารถช่วยให้คุณต่อสู้กับมันอย่างเป็นระบบ ฉันผิดที่คิดแบบนี้?

2
การตรวจสอบความถูกต้องไขว้ (ข้อผิดพลาดทั่วไป) หลังจากการเลือกรูปแบบ
หมายเหตุ: เคสคือ n >> p ฉันกำลังอ่านองค์ประกอบของการเรียนรู้ทางสถิติและมีหลายสิ่งที่กล่าวถึงวิธี "ถูกต้อง" ในการตรวจสอบข้าม (เช่นหน้า 60, หน้า 245) โดยเฉพาะคำถามของฉันคือวิธีการประเมินรุ่นสุดท้าย (ไม่มีชุดทดสอบแยก) โดยใช้ k-fold CV หรือ bootstrapping เมื่อมีการค้นหารูปแบบ? ดูเหมือนว่าในกรณีส่วนใหญ่ (อัลกอริทึม ML ที่ไม่มีการเลือกคุณสมบัติแบบฝัง) จะมี ขั้นตอนการเลือกคุณสมบัติ ขั้นตอนการเลือกพารามิเตอร์ meta (เช่นพารามิเตอร์ต้นทุนใน SVM) คำถามของฉัน: ฉันได้เห็นแล้วว่าขั้นตอนการเลือกคุณสมบัติสามารถทำได้เมื่อการเลือกคุณสมบัติเสร็จสิ้นในชุดฝึกอบรมทั้งหมด จากนั้นใช้ k-fold CV อัลกอริทึมการเลือกคุณลักษณะจะใช้ในแต่ละเท่า (รับคุณลักษณะที่แตกต่างกันซึ่งอาจเลือกได้ในแต่ละครั้ง) และข้อผิดพลาดเฉลี่ย จากนั้นคุณจะใช้คุณสมบัติที่เลือกโดยใช้ข้อมูลทั้งหมด (ที่ถูกตั้งค่าไว้) เพื่อฝึกโหมดสุดท้าย แต่ใช้ข้อผิดพลาดจากการตรวจสอบความถูกต้องของข้อมูลเพื่อประเมินประสิทธิภาพในอนาคตของโมเดล ถูกต้องหรือไม่ เมื่อคุณใช้การตรวจสอบความถูกต้องไขว้กันเพื่อเลือกพารามิเตอร์โมเดลแล้วจะประเมินประสิทธิภาพของโมเดลได้อย่างไร? มันเป็นกระบวนการที่เหมือนกันกับ # 1 ข้างต้นหรือคุณควรใช้ CV CV …

3
เราจำเป็นต้องมีชุดทดสอบเมื่อใช้การตรวจสอบความถูกต้องข้ามของ k-fold หรือไม่?
ฉันได้อ่านเกี่ยวกับการตรวจสอบ k-fold และฉันต้องการตรวจสอบให้แน่ใจว่าฉันเข้าใจวิธีการทำงาน ฉันรู้ว่าสำหรับวิธีการค้างไว้ข้อมูลจะถูกแบ่งออกเป็นสามชุดและชุดทดสอบนั้นจะถูกใช้ที่ส่วนท้ายสุดเพื่อประเมินประสิทธิภาพของรุ่นเท่านั้นในขณะที่ชุดการตรวจสอบใช้สำหรับการปรับพารามิเตอร์ไฮเปอร์พารามิเตอร์ ฯลฯ ในวิธีการ k-fold เรายังคงจัดชุดการทดสอบสำหรับส่วนท้ายและใช้เฉพาะข้อมูลที่เหลือสำหรับการฝึกอบรมและการปรับจูนพารามิเตอร์เช่นเราแบ่งข้อมูลที่เหลือเป็น k เท่าแล้วใช้ความแม่นยำเฉลี่ยหลังจากการฝึกอบรม ด้วยการพับแต่ละครั้ง (หรือตัวชี้วัดประสิทธิภาพใดก็ตามที่เราเลือกเพื่อปรับพารามิเตอร์ไฮเปอร์พารามิเตอร์) หรือเราไม่ได้ใช้ชุดทดสอบแยกเลยและแยกชุดข้อมูลทั้งหมดเป็น k เท่า (ถ้าเป็นกรณีนี้ฉันคิดว่าเราแค่พิจารณาความถูกต้องเฉลี่ยบน k เท่าเพื่อความถูกต้องสุดท้ายของเรา)?

1
ฉันควรตัดสินใจตามมาตรการการประเมินโดยเฉลี่ยแบบไมโครหรือโดยเฉลี่ยหรือไม่
ฉันใช้การตรวจสอบความถูกต้องไขว้แบบ 10 เท่าสำหรับอัลกอริธึมการจำแนกประเภทไบนารีที่แตกต่างกันโดยมีชุดข้อมูลเดียวกันและได้รับผลลัพธ์เฉลี่ยทั้งไมโครและมาโคร ควรกล่าวถึงว่านี่เป็นปัญหาการจำแนกประเภทฉลากหลายป้าย ในกรณีของฉันเชิงลบที่แท้จริงและผลบวกที่แท้จริงนั้นมีน้ำหนักเท่ากัน นั่นหมายความว่าการทำนายเชิงลบที่ถูกต้องนั้นมีความสำคัญไม่แพ้กันกับการทำนายผลบวกที่แท้จริง การวัดแบบไมโครเฉลี่ยต่ำกว่าค่าเฉลี่ยของมาโคร นี่คือผลลัพธ์ของ Neural Network และ Support Vector Machine: ฉันยังใช้การทดสอบแบ่งเปอร์เซ็นต์บนชุดข้อมูลเดียวกันด้วยอัลกอริทึมอื่น ผลการวิจัยพบว่า: ฉันอยากจะเปรียบเทียบการทดสอบแบ่งเปอร์เซ็นต์กับผลลัพธ์ที่ได้มาโครเฉลี่ย แต่สิ่งนั้นยุติธรรมหรือไม่ ฉันไม่เชื่อว่าผลลัพธ์เฉลี่ยแบบมาโครนั้นมีความลำเอียงเพราะผลบวกจริงและเชิงลบที่แท้จริงนั้นมีน้ำหนักเท่ากัน แต่จากนั้นอีกครั้งฉันสงสัยว่านี่จะเหมือนกับการเปรียบเทียบแอปเปิ้ลกับส้มหรือไม่? UPDATE จากความคิดเห็นฉันจะแสดงให้เห็นว่าการคำนวณไมโครและมาโครเฉลี่ยคำนวณอย่างไร ฉันมี 144 ป้ายกำกับ (เช่นเดียวกับคุณสมบัติหรือคุณลักษณะ) ที่ฉันต้องการทำนาย ความแม่นยำการเรียกคืนและการวัดค่า F ถูกคำนวณสำหรับแต่ละฉลาก --------------------------------------------------- LABEL1 | LABEL2 | LABEL3 | LABEL4 | .. | LABEL144 --------------------------------------------------- ? | ? | ? | ? …

4
การปรับพารามิเตอร์ไฮเปอร์พารามิเตอร์นอกการตรวจสอบไขว้นั้นแย่แค่ไหน?
ฉันรู้ว่าการดำเนินการปรับพารามิเตอร์ไฮเปอร์พารามิเตอร์นอกการตรวจสอบข้ามสามารถนำไปสู่การประเมินความถูกต้องภายนอกที่มีความลำเอียงสูงเนื่องจากชุดข้อมูลที่คุณใช้ในการวัดประสิทธิภาพนั้นเป็นชุดเดียวกับที่คุณใช้ปรับคุณสมบัติ สิ่งที่ฉันสงสัยคือปัญหานี้แย่ขนาดไหน ฉันสามารถเข้าใจได้ว่ามันจะไม่ดีจริง ๆ สำหรับการเลือกคุณลักษณะเนื่องจากสิ่งนี้จะให้คุณปรับพารามิเตอร์จำนวนมาก แต่ถ้าคุณใช้บางอย่างเช่น LASSO (ซึ่งมีเพียงพารามิเตอร์เดียว, ความแข็งแกร่งของการทำให้เป็นปกติ) หรือฟอเรสต์แบบสุ่มโดยไม่มีการเลือกคุณสมบัติ (ซึ่งสามารถมีพารามิเตอร์ไม่กี่ตัว ในสถานการณ์เหล่านี้คุณคาดหวังว่าข้อผิดพลาดในการฝึกอบรมของคุณจะเป็นไปในแง่ดีเพียงใด ฉันขอขอบคุณข้อมูลใด ๆ เกี่ยวกับเรื่องนี้ - กรณีศึกษา, เอกสาร, ข้อมูลเล็ก ๆ น้อย ๆ ฯลฯ ขอบคุณ! แก้ไข:เพื่อชี้แจงฉันไม่ได้พูดเกี่ยวกับการประเมินประสิทธิภาพของแบบจำลองในข้อมูลการฝึกอบรม (กล่าวคือไม่ได้ใช้การตรวจสอบความถูกต้องทั้งหมด) โดย "การปรับค่าพารามิเตอร์หลายพารามิเตอร์นอกการตรวจสอบข้าม" ฉันหมายถึงการใช้การตรวจสอบข้ามเพื่อประเมินประสิทธิภาพของแต่ละรุ่นเท่านั้น แต่ไม่รวมลูปการตรวจสอบความถูกต้องภายนอกที่สองเพื่อแก้ไขสำหรับการกำหนดค่าภายในกระบวนการ overfitting ในระหว่างขั้นตอนการฝึกอบรม) ดูเช่นคำตอบที่นี่

2
วิธีการใช้ฟังก์ชั่นการตรวจสอบความถูกต้องข้ามของ Scikit-Learn กับตัวแยกประเภทหลายฉลาก
ผมทดสอบลักษณนามแตกต่างกันในชุดข้อมูลที่มี 5 ชั้นเรียนและเช่นกันสามารถอยู่ในหนึ่งหรือมากกว่าหนึ่งของการเรียนเหล่านี้ดังนั้นฉันใช้ scikit sklearn.multiclass.OneVsRestClassifierการเรียนรู้ของลักษณนามหลายป้ายโดยเฉพาะ sklearn.cross_validation.StratifiedKFoldตอนนี้ผมต้องการที่จะดำเนินการตรวจสอบข้ามใช้ สิ่งนี้ทำให้เกิดข้อผิดพลาดดังต่อไปนี้: Traceback (most recent call last): File "mlfromcsv.py", line 93, in <module> main() File "mlfromcsv.py", line 77, in main test_classifier_multilabel(svm.LinearSVC(), X, Y, 'Linear Support Vector Machine') File "mlfromcsv.py", line 44, in test_classifier_multilabel scores = cross_validation.cross_val_score(clf_ml, X, Y_list, cv=cv, score_func=metrics.precision_recall_fscore_support, n_jobs=jobs) File "/usr/lib/pymodules/python2.7/sklearn/cross_validation.py", line 1046, …

1
คำเตือน libsvm“ ถึงจำนวนสูงสุดของการวนซ้ำ” และการตรวจสอบความถูกต้องข้าม
ฉันกำลังใช้ libsvm ในโหมด C-SVC กับเคอร์เนลโพลิโนเมียลระดับ 2 และฉันต้องฝึก SVM หลายตัว ชุดฝึกอบรมแต่ละชุดมี 10 คุณสมบัติและ 5,000 เวกเตอร์ ในระหว่างการฝึกอบรมฉันได้รับคำเตือนนี้สำหรับ SVM ส่วนใหญ่ที่ฉันฝึก: WARNING: reaching max number of iterations optimization finished, #iter = 10000000 มีคนช่วยอธิบายอธิบายคำเตือนนี้ได้อย่างไรและอาจจะหลีกเลี่ยงได้อย่างไร ฉันต้องการใช้การตรวจสอบข้ามสำหรับรุ่นของฉันเพื่อกำหนดตัวเลือกที่ดีที่สุดสำหรับแกมม่าและ C แผนของฉันคือลองใช้การรวมกันของค่า 10 ค่าเหล่านี้: 0.00001, 0.0001, 0.001, 0.01, 0.1, 1, 10, 100, 1,000, 10,000, 10,000 สำหรับพารามิเตอร์ทั้งสองและดูว่าชุดค่าผสมใดให้ความแม่นยำที่ดีที่สุดระหว่างการตรวจสอบ เพียงพอหรือไม่ ฉันควรใช้ค่ามากขึ้นในช่วงเวลานี้หรือฉันควรเลือกช่วงเวลาที่กว้างขึ้น?

2
การตรวจสอบความถูกต้องเทียบกับเบย์เชิงประจักษ์สำหรับการประมาณค่าพารามิเตอร์
ด้วยรูปแบบลำดับชั้นฉันต้องการกระบวนการสองขั้นตอนเพื่อให้พอดีกับแบบจำลอง ครั้งแรกที่แก้ไขกำมือของ hyperparametersแล้วดำเนินการอนุมานแบบเบย์ในส่วนที่เหลือของพารามิเตอร์\สำหรับการแก้ไขพารามิเตอร์หลายมิติฉันกำลังพิจารณาสองตัวเลือกp(x|ϕ,θ)p(x|ϕ,θ)p(x|\phi,\theta)θθ\thetaϕϕ\phi ใช้Empirical Bayes (EB)และเพิ่มความเป็นไปได้ที่จะเกิด (รวมส่วนที่เหลือของตัวแบบซึ่งมีพารามิเตอร์มิติสูง)p(all data|θ)p(all data|θ)p(\mbox{all data}|\theta) ใช้ข้ามการตรวจสอบ (CV)เทคนิคเช่นเท่าการตรวจสอบข้ามให้เลือกที่เพิ่มโอกาสtheta)kkkθθ\thetap(test data|training data,θ)p(test data|training data,θ)p(\mbox{test data}|\mbox{training data}, \theta) ข้อได้เปรียบของ EB คือว่าผมสามารถใช้ข้อมูลทั้งหมดในครั้งเดียวในขณะที่สำหรับ CV ผมจำเป็นที่จะต้อง (อาจ) คำนวณความน่าจะเป็นรูปแบบหลายครั้งและค้นหา\ประสิทธิภาพของ EB และ CV นั้นเทียบเคียงได้ในหลายกรณี (*) และบ่อยครั้งที่ EB นั้นจะประเมินได้เร็วกว่าθθ\theta คำถาม: มีรากฐานทางทฤษฎีที่เชื่อมโยงทั้งสอง (พูด EB และ CV เหมือนกันในขีด จำกัด ของข้อมูลขนาดใหญ่)? หรือเชื่อมโยง EB กับเกณฑ์ทั่วไปบางอย่างเช่นความเสี่ยงเชิงประจักษ์? ใครบางคนสามารถชี้ไปที่วัสดุอ้างอิงที่ดี? (*) ตามภาพประกอบนี่คือภาพจาก Murphy's …

2
การทดสอบความสำคัญหรือการตรวจสอบความถูกต้องข้าม?
วิธีการทั่วไปสองวิธีในการเลือกตัวแปรที่เกี่ยวข้องคือการทดสอบที่สำคัญและการตรวจสอบความถูกต้องข้าม แต่ละปัญหาพยายามแก้ปัญหาอย่างไรและเมื่อใดที่ฉันจะเลือกใช้อีกอันหนึ่ง

4
ค่าที่ถูกต้องสำหรับความแม่นยำและการเรียกคืนในกรณีขอบคืออะไร?
ความแม่นยำหมายถึง: p = true positives / (true positives + false positives) มันถูกต้องหรือไม่ที่ในฐานะtrue positivesและfalse positivesวิธีที่ 0 ความแม่นยำเข้าใกล้ 1? คำถามเดียวกันสำหรับการเรียกคืน: r = true positives / (true positives + false negatives) ขณะนี้ฉันกำลังใช้การทดสอบทางสถิติที่ฉันต้องการคำนวณค่าเหล่านี้และบางครั้งมันก็เกิดขึ้นที่ตัวส่วนเป็น 0 และฉันสงสัยว่าจะคืนค่าใดให้กับกรณีนี้ PS: ขอโทษแท็กที่ไม่เหมาะสมผมอยากจะใช้recall, precisionและlimitแต่ฉันไม่สามารถสร้างแท็กใหม่ ๆ
20 precision-recall  data-visualization  logarithm  references  r  networks  data-visualization  standard-deviation  probability  binomial  negative-binomial  r  categorical-data  aggregation  plyr  survival  python  regression  r  t-test  bayesian  logistic  data-transformation  confidence-interval  t-test  interpretation  distributions  data-visualization  pca  genetics  r  finance  maximum  probability  standard-deviation  probability  r  information-theory  references  computational-statistics  computing  references  engineering-statistics  t-test  hypothesis-testing  independence  definition  r  censoring  negative-binomial  poisson-distribution  variance  mixed-model  correlation  intraclass-correlation  aggregation  interpretation  effect-size  hypothesis-testing  goodness-of-fit  normality-assumption  small-sample  distributions  regression  normality-assumption  t-test  anova  confidence-interval  z-statistic  finance  hypothesis-testing  mean  model-selection  information-geometry  bayesian  frequentist  terminology  type-i-and-ii-errors  cross-validation  smoothing  splines  data-transformation  normality-assumption  variance-stabilizing  r  spss  stata  python  correlation  logistic  logit  link-function  regression  predictor  pca  factor-analysis  r  bayesian  maximum-likelihood  mcmc  conditional-probability  statistical-significance  chi-squared  proportion  estimation  error  shrinkage  application  steins-phenomenon 

2
Bayesian กำลังคิดเรื่องกำลังพลเกินกำลัง
ฉันทุ่มเทเวลาอย่างมากในการพัฒนาวิธีการและซอฟต์แวร์สำหรับตรวจสอบแบบจำลองการทำนายในโดเมนสถิติที่ใช้บ่อย ในการนำแนวคิดแบบเบย์มาใช้ในการฝึกฝนและการสอนฉันเห็นความแตกต่างที่สำคัญในการโอบกอด ขั้นแรกการสร้างแบบจำลองการทำนายแบบเบย์ขอให้นักวิเคราะห์คิดอย่างหนักเกี่ยวกับการแจกแจงก่อนหน้าซึ่งอาจปรับให้เข้ากับคุณสมบัติของผู้สมัครและนักบวชเหล่านี้จะดึงแบบจำลองไปทางพวกเขา (กล่าวคือบรรลุการหด / ลงโทษ ) ประการที่สองวิธีเบย์ "ของจริง" ไม่ได้ส่งผลให้มีรูปแบบเดียว แต่ก็มีการกระจายหลังทั้งหมดสำหรับการทำนาย เมื่อคำนึงถึงคุณสมบัติของเบย์เซียนแล้วความหมายของการ overfitting หมายความว่าอะไร? เราควรประเมินมันหรือไม่? ถ้าเป็นเช่นนั้นได้อย่างไร เราจะรู้ได้อย่างไรว่าแบบจำลองแบบเบย์มีความน่าเชื่อถือสำหรับการใช้งานภาคสนาม? หรือว่าเป็นจุดที่สงสัยตั้งแต่ผู้โพสต์จะดำเนินการตามความไม่แน่นอนให้เตือนทั้งหมดเมื่อเราใช้แบบจำลองที่เราพัฒนาขึ้นสำหรับการทำนาย? ความคิดจะเปลี่ยนไปอย่างไรถ้าเราบังคับให้แบบจำลอง Bayesian กลั่นเป็นตัวเลขเดียวเช่นความเสี่ยงด้านหลัง / โหมด / ค่ามัธยฐานด้านหลัง? ผมเห็นความคิดที่เกี่ยวข้องบางอย่างที่นี่ การอภิปรายขนานอาจจะพบได้ที่นี่ คำถามติดตามผล :: ถ้าเราเป็นคนเบย์อย่างเต็มที่และใช้เวลาคิดเกี่ยวกับนักบวชก่อนที่จะเห็นข้อมูลและเราพอดีกับแบบจำลองที่มีการระบุความน่าจะเป็นของข้อมูลอย่างเหมาะสมเราถูกบังคับให้พอใจกับแบบจำลองของเรา ? หรือเราจำเป็นต้องทำในสิ่งที่เราทำในโลกที่มีผู้ถูกเลือกแบบสุ่มอาจถูกคาดการณ์ได้ดีโดยเฉลี่ย แต่ถ้าเราเลือกวิชาที่มีการทำนายต่ำมากหรือมีค่าที่คาดการณ์ไว้สูงมากจะมีการถดถอย หมายถึงอะไร

2
ฟังก์ชั่น caret Train สำหรับ glmnet cross-validate สำหรับทั้ง alpha และ lambda หรือไม่?
ไม่ R caretแพคเกจข้ามการตรวจสอบทั้งในalphaและlambdaสำหรับglmnetรูปแบบ? ใช้รหัสนี้ eGrid <- expand.grid(.alpha = (1:10) * 0.1, .lambda = (1:10) * 0.1) Control <- trainControl(method = "repeatedcv",repeats = 3,verboseIter =TRUE) netFit <- train(x =train_features, y = y_train, method = "glmnet", tuneGrid = eGrid, trControl = Control) บันทึกการฝึกอบรมมีลักษณะเช่นนี้ Fold10.Rep3: alpha=1.0, lambda=NA อะไรlambda=NAหมายถึง?

1
k-fold การตรวจสอบความถูกต้องของการเรียนรู้ทั้งมวล
ฉันสับสนเกี่ยวกับวิธีแบ่งพาร์ติชันข้อมูลสำหรับการตรวจสอบความถูกต้องของวง k-fold สมมติว่าฉันมีกรอบการเรียนรู้ทั้งมวลสำหรับการจำแนก เลเยอร์แรกของฉันมีโมเดลการจัดหมวดหมู่เช่น svm แผนภูมิการตัดสินใจ เลเยอร์ที่สองของฉันมีโมเดลการลงคะแนนซึ่งรวมการทำนายจากเลเยอร์แรกและให้การทำนายขั้นสุดท้าย หากเราใช้การตรวจสอบความถูกต้อง 5 เท่าของ cross-cross ฉันคิดว่าจะใช้ 5 folds ดังนี้: 3 เท่าสำหรับการฝึกชั้นแรก 1 เท่าสำหรับฝึกซ้อมเลเยอร์ที่สอง 1 เท่าสำหรับการทดสอบ นี้เป็นวิธีที่ถูกต้องหรือไม่? ข้อมูลการฝึกอบรมสำหรับชั้นหนึ่งและชั้นสองควรเป็นอิสระหรือไม่? ฉันคิดว่าพวกเขาควรจะมีความเป็นอิสระเพื่อให้กรอบการเรียนรู้ทั้งมวลจะแข็งแกร่ง เพื่อนของฉันแนะนำข้อมูลการฝึกอบรมสำหรับเลเยอร์แรกและเลเยอร์ที่สองควรเหมือนกันเช่น 4 เท่าสำหรับการฝึกชั้นหนึ่งและชั้นสอง 1 เท่าสำหรับการทดสอบ ด้วยวิธีนี้เราจะมีข้อผิดพลาดที่แม่นยำยิ่งขึ้นของกรอบการเรียนรู้ทั้งมวลและการปรับกรอบซ้ำ ๆ จะมีความแม่นยำมากขึ้นเนื่องจากมีพื้นฐานจากข้อมูลการฝึกอบรมเพียงครั้งเดียว นอกจากนี้เลเยอร์ที่สองอาจมีอคติต่อข้อมูลการฝึกอบรมที่เป็นอิสระ คำแนะนำใด ๆ ที่ชื่นชมอย่างมาก

1
ประโยชน์ของการสุ่มแบบแบ่งชั้นและสุ่มตัวอย่างเพื่อสร้างข้อมูลการฝึกอบรมในการจำแนกประเภท
ฉันต้องการทราบว่ามีข้อได้เปรียบใด ๆ / บางส่วนของการใช้การสุ่มตัวอย่างแบบแบ่งชั้นแทนการสุ่มตัวอย่างแบบสุ่มหรือไม่เมื่อแยกชุดข้อมูลเดิมเข้ากับชุดการฝึกอบรมและการทดสอบสำหรับการจำแนก การสุ่มตัวอย่างแบบแบ่งชั้นจะทำให้มีอคติต่อลักษณนามมากกว่าการสุ่มตัวอย่างแบบสุ่มหรือไม่? แอพพลิเคชั่นที่ฉันต้องการใช้การสุ่มตัวอย่างแบบแบ่งชั้นเพื่อเตรียมข้อมูลเป็นตัวจําแนกประเภทลอเรนซ์ป่าซึ่งผ่านการฝึกอบรมเมื่อวันที่2323\frac{2}{3}ของชุดข้อมูลดั้งเดิม ก่อนตัวแยกประเภทยังมีขั้นตอนของการสร้างตัวอย่างสังเคราะห์ (SMOTE [1]) ซึ่งปรับขนาดของคลาสให้สมดุล [1] Chawla, Nitesh V. และอื่น ๆ " SMOTE: เทคนิคการสุ่มตัวอย่างแบบสังเคราะห์ส่วนน้อย " วารสารวิจัยปัญญาประดิษฐ์ 16 (2002): 321-357

โดยการใช้ไซต์ของเรา หมายความว่าคุณได้อ่านและทำความเข้าใจนโยบายคุกกี้และนโยบายความเป็นส่วนตัวของเราแล้ว
Licensed under cc by-sa 3.0 with attribution required.