5
วิธีทำความเข้าใจข้อเสียของ K-mean
K-mean เป็นวิธีที่ใช้กันอย่างแพร่หลายในการวิเคราะห์กลุ่ม ในความเข้าใจของฉันวิธีนี้ไม่จำเป็นต้องมีข้อสมมติฐานใด ๆ เช่นให้ชุดข้อมูลและจำนวนกลุ่มที่กำหนดไว้ล่วงหน้าฉันและฉันเพิ่งใช้อัลกอริทึมนี้ซึ่งช่วยลดผลรวมของข้อผิดพลาดกำลังสอง (SSE) ภายในคลัสเตอร์กำลังสอง ความผิดพลาด k-mean จึงเป็นปัญหาการหาค่าเหมาะที่สุด ฉันอ่านเนื้อหาเกี่ยวกับข้อเสียของ k-mean ส่วนใหญ่พูดว่า: k- หมายถึงถือว่าความแปรปรวนของการกระจายของแต่ละคุณลักษณะ (ตัวแปร) เป็นทรงกลม; ตัวแปรทั้งหมดมีความแปรปรวนเดียวกัน ความน่าจะเป็นก่อนหน้านี้สำหรับ k k ทั้งหมดนั้นเหมือนกันกล่าวคือแต่ละกลุ่มมีจำนวนการสังเกตอย่างเท่าเทียมกัน หากมีการละเมิดสมมติฐานข้อใดข้อหนึ่งใน 3 ข้อใดข้อหนึ่งของ k-mean จะล้มเหลว ฉันไม่เข้าใจตรรกะหลังคำสั่งนี้ ฉันคิดว่าวิธี k-mean ไม่มีข้อสมมติฐานเป็นหลักมันแค่ลด SSE ลงเท่านั้นดังนั้นฉันจึงไม่สามารถเห็นลิงก์ระหว่างการลด SSE และ "สมมติฐาน" ทั้งสามนี้