เหตุใดส่วนที่เหลือของ Pearson จากการถดถอยแบบทวินามเชิงลบจึงมีขนาดเล็กกว่าการถดถอยแบบปัวซอง
ฉันมีข้อมูลเหล่านี้: set.seed(1) predictor <- rnorm(20) set.seed(1) counts <- c(sample(1:1000, 20)) df <- data.frame(counts, predictor) ฉันใช้การถดถอยปัวซอง poisson_counts <- glm(counts ~ predictor, data = df, family = "poisson") และการถดถอยแบบทวินามลบ require(MASS) nb_counts <- glm.nb(counts ~ predictor, data = df) จากนั้นฉันคำนวณหาสถิติการกระจายตัวสำหรับการถดถอยปัวซอง: sum(residuals(poisson_counts, type="pearson")^2)/df.residual(poisson_counts) # [1] 145.4905 และการถดถอยแบบทวินามลบ sum(residuals(nb_counts, type="pearson")^2)/df.residual(nb_counts) # [1] 0.7650289 มีใครที่สามารถอธิบายได้โดยไม่ต้องใช้เครื่องมือทำไมสถิติการกระจายตัวของการถดถอยแบบทวินามลบน้อยกว่าสถิติการกระจายตัวสำหรับการถดถอยปัวซอง