2
เงื่อนไขทั้งหมดมาจากการสุ่มตัวอย่างที่กิ๊บส์?
อัลกอริทึม MCMC เช่นการสุ่มตัวอย่าง Metropolis-Hastings และ Gibbs เป็นวิธีการสุ่มตัวอย่างจากการกระจายหลังร่วมกัน ฉันคิดว่าฉันเข้าใจและสามารถนำไปใช้ในการทำให้มหานครสวยได้อย่างง่ายดาย - คุณเพียงแค่เลือกจุดเริ่มต้นอย่างใดอย่างหนึ่งและ 'เดินพื้นที่พารามิเตอร์' โดยการสุ่มนำโดยความหนาแน่นหลังและความหนาแน่นของข้อเสนอ การสุ่มตัวอย่างของกิ๊บส์ดูเหมือนจะคล้ายกันมาก แต่มีประสิทธิภาพมากกว่าเนื่องจากจะอัปเดตพารามิเตอร์ครั้งละหนึ่งเท่านั้นในขณะที่ถือค่าคงตัวอื่น ๆ อย่างมีประสิทธิภาพการเดินบนอวกาศในรูปแบบมุมฉาก ในการดำเนินการนี้คุณต้องมีเงื่อนไขครบถ้วนของแต่ละพารามิเตอร์ในการวิเคราะห์จาก * แต่เงื่อนไขทั้งหมดนี้มาจากไหน P(x1|x2, …, xn)=P(x1, …, xn)P(x2, …, xn)P(x1|x2, …, xn)=P(x1, …, xn)P(x2, …, xn) P(x_1 | x_2,\ \ldots,\ x_n) = \frac{P(x_1,\ \ldots,\ x_n)}{P(x_2,\ \ldots,\ x_n)} ที่จะได้รับส่วนที่คุณจำเป็นต้องเหยียดหยามร่วมกว่าx1x1x_11 ดูเหมือนว่าจะมีการทำงานมากมายที่ต้องทำการวิเคราะห์หากมีพารามิเตอร์จำนวนมากและอาจไม่สามารถจัดการได้หากการกระจายข้อต่อไม่ดีมาก ฉันรู้ว่าถ้าคุณใช้การผันคำกริยาตลอดทั้งโมเดลเงื่อนไขแบบเต็มอาจง่าย แต่ก็ต้องมีวิธีที่ดีกว่าสำหรับสถานการณ์ทั่วไปมากขึ้น ตัวอย่างทั้งหมดของการสุ่มตัวอย่างของกิ๊บส์ที่ฉันเคยเห็นตัวอย่างการใช้ของเล่นออนไลน์ (เช่นการสุ่มตัวอย่างจากตัวแปรหลายตัวแปรซึ่งเงื่อนไขเป็นเพียงบรรทัดฐานของตัวเอง) และดูเหมือนจะหลบปัญหานี้ …