2
การจำแนกประเภทที่มีป้ายกำกับที่มีเสียงดัง?
ฉันพยายามฝึกอบรมเครือข่ายประสาทเทียมเพื่อจัดหมวดหมู่ แต่ป้ายกำกับที่ฉันมีเสียงค่อนข้างดัง (ประมาณ 30% ของป้ายกำกับผิด) การสูญเสียข้ามเอนโทรปีใช้งานได้จริง แต่ฉันสงสัยว่ามีทางเลือกอื่นที่มีประสิทธิภาพมากกว่าในกรณีนี้หรือไม่? หรือการสูญเสียข้ามเอนโทรปีเหมาะสมที่สุดหรือไม่ ฉันไม่แน่ใจ แต่ฉันคิดว่าค่อนข้าง "ตัด" การสูญเสียข้ามเอนโทรปีดังนั้นการสูญเสียจุดข้อมูลหนึ่งจุดจะไม่เกินขอบเขตบน ขอบคุณ! ปรับปรุง ตามคำตอบของลูคัสผมได้ต่อไปนี้สำหรับสัญญาซื้อขายล่วงหน้าสำหรับการส่งออกการทำนายและใส่ของฟังก์ชัน softmax Zดังนั้นฉันเดาว่ามันคือการเพิ่มเทอมที่ราบรื่นลงในอนุพันธ์ สัญญาซื้อขายล่วงหน้าสำหรับการสูญเสียข้ามเอนโทรปีดั้งเดิม: z 3yyyzzz Pฉัน=0.3/N+0.7YฉันL=-Σทีฉันเข้าสู่ระบบ(Pฉัน)∂ลิตร37N37N\frac{3}{7N} pi=0.3/N+0.7yipi=0.3/N+0.7yip_i=0.3/N+0.7y_i l=−∑tilog(pi)l=−∑tilog(pi)l=-\sum t_i\log(p_i) ∂l∂l∂yi=−ti∂log(pi)∂pi∂pi∂yi=−0.7tipi=−ti37N+yi∂l∂yi=−ti∂log(pi)∂pi∂pi∂yi=−0.7tipi=−ti37N+yi\frac{\partial l}{\partial y_i}=-t_i\frac{\partial\log(p_i)}{\partial p_i}\frac{\partial p_i}{\partial y_i}=-0.7\frac{t_i}{p_i}=-\frac{t_i}{\frac{3}{7N}+y_i} ∂l∂zi=0.7∑jtjpj∂yj∂zi=yi∑jtjyj37N+yj−tiyi37N+yi∂l∂zi=0.7∑jtjpj∂yj∂zi=yi∑jtjyj37N+yj−tiyi37N+yi\frac{\partial l}{\partial z_i}=0.7\sum_j\frac{t_j}{p_j}\frac{\partial y_j}{\partial z_i}=y_i\sum_jt_j\frac{y_j}{\frac{3}{7N}+y_j}-t_i\frac{y_i}{\frac{3}{7N}+y_i}∂l∂yi=−tiyi∂l∂yi=−tiyi\frac{\partial l}{\partial y_i}=-\frac{t_i}{y_i} ∂l∂zi=yi−ti∂l∂zi=yi−ti\frac{\partial l}{\partial z_i}=y_i-t_i โปรดแจ้งให้เราทราบหากฉันผิด ขอบคุณ! อัปเดต ฉันเพิ่งอ่านบทความโดย Googleที่ใช้สูตรเดียวกันกับคำตอบของลูคัส แต่มีการตีความที่แตกต่างกัน ในส่วนที่ 7 การทำให้เป็นมาตรฐานโมเดลผ่านการปรับให้เรียบของฉลาก อย่างไรก็ตามการสูญเสียเอนโทรปีนี้อาจทำให้เกิดปัญหาสองประการ …