1
สัญชาตญาณของตัวอย่างที่แลกเปลี่ยนได้ภายใต้สมมติฐานว่างคืออะไร
การทดสอบการเปลี่ยนรูป (เรียกอีกอย่างว่าการทดสอบแบบสุ่มการทดสอบแบบสุ่มอีกครั้งหรือการทดสอบที่แน่นอน) มีประโยชน์มากและมีประโยชน์เมื่อสมมติฐานของการแจกแจงปกติที่ต้องการโดยตัวอย่างเช่นt-testไม่พบและเมื่อการเปลี่ยนแปลงของค่าโดยการจัดอันดับ การทดสอบแบบไม่มีพารามิเตอร์Mann-Whitney-U-testจะนำไปสู่การสูญเสียข้อมูลมากขึ้น อย่างไรก็ตามไม่ควรมองข้ามสมมุติฐานข้อเดียวและข้อเดียวเพียงข้อเดียวเมื่อใช้การทดสอบชนิดนี้คือข้อสมมติฐานของความสามารถแลกเปลี่ยนได้ของตัวอย่างภายใต้สมมติฐานว่าง เป็นที่น่าสังเกตว่าวิธีการแบบนี้สามารถใช้ได้เมื่อมีตัวอย่างมากกว่าสองตัวอย่างเช่นสิ่งที่นำไปใช้ในcoinแพ็คเกจ R คุณช่วยกรุณาใช้ภาษาที่เป็นรูปเป็นร่างหรือปรีชาเชิงแนวคิดในภาษาอังกฤษธรรมดาเพื่อแสดงสมมติฐานนี้ได้หรือไม่? นี่จะมีประโยชน์มากในการอธิบายปัญหาที่ถูกมองข้ามในหมู่ผู้ที่ไม่ใช่นักสถิติเช่นฉัน หมายเหตุ: จะเป็นประโยชน์อย่างมากหากพูดถึงกรณีที่การใช้การทดสอบการเปลี่ยนแปลงไม่ถือหรือไม่ถูกต้องภายใต้สมมติฐานเดียวกัน ปรับปรุง: สมมติว่าฉันมี 50 วิชาที่รวบรวมจากคลินิกท้องถิ่นในเขตของฉันโดยการสุ่ม พวกเขาถูกสุ่มให้รับยาหรือยาหลอกในอัตราส่วน 1: 1 พวกเขาทั้งหมดถูกวัดสำหรับ Paramerter 1 Par1ที่ V1 (พื้นฐาน), V2 (3 เดือนต่อมา) และ V3 (1 ปีต่อมา) วิชาทั้งหมด 50 กลุ่มสามารถแบ่งเป็น 2 กลุ่มตามคุณสมบัติ A; ค่าบวก = 20 และค่าลบ = 30 นอกจากนี้ยังสามารถจัดกลุ่มย่อยได้อีก 2 กลุ่มตามคุณลักษณะ B; B positive = …
15
hypothesis-testing
permutation-test
exchangeability
r
statistical-significance
loess
data-visualization
normal-distribution
pdf
ggplot2
kernel-smoothing
probability
self-study
expected-value
normal-distribution
prior
correlation
time-series
regression
heteroscedasticity
estimation
estimators
fisher-information
data-visualization
repeated-measures
binary-data
panel-data
mathematical-statistics
coefficient-of-variation
normal-distribution
order-statistics
regression
machine-learning
one-class
probability
estimators
forecasting
prediction
validation
finance
measurement-error
variance
mean
spatial
monte-carlo
data-visualization
boxplot
sampling
uniform
chi-squared
goodness-of-fit
probability
mixture
theory
gaussian-mixture
regression
statistical-significance
p-value
bootstrap
regression
multicollinearity
correlation
r
poisson-distribution
survival
regression
categorical-data
ordinal-data
ordered-logit
regression
interaction
time-series
machine-learning
forecasting
cross-validation
binomial
multiple-comparisons
simulation
false-discovery-rate
r
clustering
frequency
wilcoxon-mann-whitney
wilcoxon-signed-rank
r
svm
t-test
missing-data
excel
r
numerical-integration
r
random-variable
lme4-nlme
mixed-model
weighted-regression
power-law
errors-in-variables
machine-learning
classification
entropy
information-theory
mutual-information