2
B-Splines VS พหุนามลำดับสูงในการถดถอย
ฉันไม่มีตัวอย่างหรืองานเฉพาะในใจ ฉันเพิ่งใหม่ในการใช้ b-splines และฉันต้องการทำความเข้าใจกับฟังก์ชันนี้ในบริบทการถดถอย สมมติว่าเราต้องการที่จะประเมินความสัมพันธ์ระหว่างตัวแปรตอบสนองและพยากรณ์บางx 1 , x 2 , . . , xพี ตัวทำนายประกอบด้วยตัวแปรตัวเลขบางตัวและตัวแปรบางตัวyyyx1,x2,...,xpx1,x2,...,xpx_1, x_2,...,x_p สมมติว่าหลังจากปรับโมเดลการถดถอยแล้วหนึ่งในตัวแปรตัวเลขเช่นนั้นมีความสำคัญ ตรรกะขั้นตอนหลังจากนั้นคือการประเมินว่าคำสั่งชื่อพหุนามที่สูงขึ้นเช่น: x 2 1และx 3 1จะต้องอธิบายความสัมพันธ์อย่างเพียงพอโดยไม่ต้อง overfittingx1x1x_1x21x12x_1^2x31x13x_1^3 คำถามของฉันคือ: คุณเลือกจุดไหนระหว่าง b-splines หรือพหุนามคำสั่งที่สูงขึ้นอย่างง่าย เช่นใน R: y ~ poly(x1,3) + x2 + x3 VS y ~ bs(x1,3) + x2 + x3 คุณจะใช้พล็อตเพื่อแจ้งการเลือกระหว่างสองสิ่งนี้กับสิ่งที่เกิดขึ้นได้อย่างไรหากไม่ชัดเจนจากพล็อต (เช่น: เนื่องจากจุดข้อมูลจำนวนมาก) คุณจะประเมินเงื่อนไขการโต้ตอบแบบสองทางระหว่างและสมมุติว่าx 3x2x2x_2x3x3x_3 …