คำถามติดแท็ก rejection-sampling

2
ทางเลือกการกระจายเชิงประจักษ์
เงินรางวัล: เงินรางวัลเต็มจำนวนจะมอบให้กับผู้ที่ให้การอ้างอิงถึงเอกสารเผยแพร่ใด ๆ ที่ใช้หรือกล่าวถึงตัวประมาณF~F~\tilde{F}ด้านล่าง แรงจูงใจ: ส่วนนี้อาจไม่สำคัญสำหรับคุณและฉันสงสัยว่ามันจะไม่ช่วยให้คุณได้รับรางวัล แต่เนื่องจากมีคนถามเกี่ยวกับแรงจูงใจนี่คือสิ่งที่ฉันกำลังทำอยู่ ฉันกำลังทำงานกับปัญหาทฤษฎีกราฟเชิงสถิติ มาตรฐานวัตถุหนาแน่นกราฟ จำกัดW:[0,1]2→[0,1]W:[0,1]2→[0,1]W : [0,1]^2 \to [0,1]เป็นฟังก์ชันสมมาตรในแง่ที่ว่าW(u,v)=W(v,u)W(u,v)=W(v,u)W(u,v) = W(v,u) ) การสุ่มตัวอย่างกราฟบนnnnจุดยอดสามารถคิดได้ว่าเป็นการสุ่มตัวอย่างnnnค่าเครื่องแบบในช่วงหน่วย ( UiUiU_iสำหรับi=1,…,ni=1,…,ni = 1, \dots, n) แล้วน่าจะเป็นของขอบนั้น(i,j)(i,j)(i,j)เป็นW(Ui,Uj)W(Ui,Uj)W(U_i, U_j) ) ให้ถ้อยคำเมทริกซ์ที่เกิดจะเรียกว่าAAA WWW∬ W > 0 f A f f f ∑ A Wf=W/∬Wf=W/∬Wf = W / \iint W∬W>0∬W>0\iint W > 0fffAAAfffffffff∑A∑A\sum AWWW แต่น่าเสียดายที่วิธีการที่ผมพบว่าการแสดงความสอดคล้องเมื่อเราได้ลิ้มลองจากการจัดจำหน่ายที่มีความหนาแน่นฉวิธีสร้างนั้นต้องการให้ฉันสุ่มตารางคะแนน …

2
วิธีตัวอย่างจากการกระจายแบบไม่ต่อเนื่องในจำนวนเต็มไม่ลบ
ฉันมีการกระจายแบบไม่ต่อเนื่องโดยที่เป็นค่าคงที่ที่รู้จัก:α,βα,β\alpha,\beta p(x;α,β)=Beta(α+1,β+x)Beta(α,β)for x=0,1,2,…p(x;α,β)=Beta(α+1,β+x)Beta(α,β)for x=0,1,2,… p(x;\alpha,\beta) = \frac{\text{Beta}(\alpha+1, \beta+x)}{\text{Beta}(\alpha,\beta)} \;\;\;\;\text{for } x = 0,1,2,\dots มีวิธีใดบ้างในการสุ่มตัวอย่างอย่างมีประสิทธิภาพจากการกระจายนี้

3
จำลองตัวแปร Bernoulli ด้วยความน่าจะโดยใช้เหรียญแบบเอนเอียง
มีคนบอกฉันได้ไหมว่าจะจำลองโดยที่โดยใช้การโยนเหรียญ (มากเท่าที่คุณต้องการ) ด้วย ?Bernoulli(ab)Bernoulli(ab)\mathrm{Bernoulli}\left({a\over b}\right)a,b∈Na,b∈Na,b\in \mathbb{N}P(H)=pP(H)=pP(H)=p ฉันกำลังคิดที่จะใช้การสุ่มตัวอย่างการปฏิเสธ แต่ไม่สามารถตอกตะปูลงได้
โดยการใช้ไซต์ของเรา หมายความว่าคุณได้อ่านและทำความเข้าใจนโยบายคุกกี้และนโยบายความเป็นส่วนตัวของเราแล้ว
Licensed under cc by-sa 3.0 with attribution required.