คำถามนี้เกี่ยวกับจุดตัดของทฤษฎีความน่าจะเป็นและความซับซ้อนในการคำนวณ ข้อสังเกตสำคัญอย่างหนึ่งคือการแจกแจงบางอย่างง่ายกว่าการสร้างอื่น ๆ ตัวอย่างเช่นปัญหา
ได้รับหมายเลขกลับมาเป็นจำนวนมากกระจายเหมือนกันกับ<n
แก้ง่าย ในทางตรงกันข้ามปัญหาต่อไปนี้คือหรือดูเหมือนจะยากขึ้นมาก
รับตัวเลขส่งคืนตัวเลขซึ่งคือ (จำนวนGödel) หลักฐานที่ถูกต้องของความยาว n ใน Peano เลขคณิต นอกจากนี้หากจำนวนการพิสูจน์ดังกล่าวเป็นแล้วน่าจะเป็นที่จะได้รับหลักฐานใด ๆ ที่เฉพาะเจาะจงของความยาว ควรจะ(n)}
สิ่งนี้ชี้ให้เห็นว่าการแจกแจงความน่าจะเป็นมาพร้อมกับแนวคิดเรื่องความซับซ้อนในการคำนวณ ยิ่งไปกว่านั้นความซับซ้อนนี้อาจเกี่ยวข้องกับปัญหาการตัดสินใจอย่างใกล้ชิด (ไม่ว่าจะเรียกซ้ำย่อยเช่น, ซ้ำซ้ำนับซ้ำหรือแย่กว่านั้น)
คำถามของฉันคือใครจะกำหนดความซับซ้อนในการคำนวณของการแจกแจงความน่าจะเป็นได้อย่างไรโดยเฉพาะอย่างยิ่งในกรณีที่ปัญหาการตัดสินใจไม่สามารถตัดสินใจได้ ฉันแน่ใจว่าสิ่งนี้ได้รับการตรวจสอบแล้ว แต่ฉันไม่แน่ใจว่าจะมองที่ใด