ฉันกำลังมองหาทฤษฎีบทที่พูดอะไรบางอย่างเช่นนี้: ถ้าเวลาที่ครอบคลุมของห่วงโซ่มาร์คอฟแบบพลิกกลับได้มีขนาดเล็กแล้วช่องว่างของสเปกตรัมก็ใหญ่ นี่หมายถึงช่องว่างของสเปกตรัมนั่นคือเราไม่สนใจค่าลักษณะเฉพาะที่เล็กที่สุดของห่วงโซ่
ผลลัพธ์เดียวที่ฉันสามารถค้นพบในทิศทางนี้คือจากขอบเขตบนปกเวลา Broder และ Karlin, FOCS 88 ที่นั่นมีการสันนิษฐานว่าเมทริกซ์การเปลี่ยนแปลงของห่วงโซ่คือสุ่มสองครั้ง (แต่ไม่จำเป็นต้องย้อนกลับ) และ aperiodic; บทความนี้แสดงให้เห็นว่าภายใต้สมมติฐานเหล่านี้หากเวลาครอบคลุมจากนั้น อย่างน้อย1}
โดยสังหรณ์ใจดูเหมือนว่าเป็นไปได้มากว่าถ้าคุณสามารถครอบคลุมจุดยอดทั้งหมดของกราฟอย่างรวดเร็วจากนั้นเวลาผสมควรน้อย โดยเฉพาะอย่างยิ่งหากคุณสามารถครอบคลุมจุดยอดทั้งหมดของกราฟในเวลาแน่นอนคุณควรจะสามารถแยกช่องว่างสเปกตรัมของพูด ?
หนึ่งอุปสรรคที่เป็นไปได้ที่จะทำลายความหมายระหว่างเวลาฝาครอบขนาดเล็กและช่องว่างสเปกตรัมที่มีขนาดใหญ่เป็น bipartiteness: ในฝ่ายกราฟคุณสามารถมีช่วงเวลาที่ฝาครอบขนาดเล็กที่มีค่าเฉพาะของ-1ในคำถามของฉันฉันกำลังข้ามปัญหานี้โดยไม่สนใจค่าลักษณะเฉพาะที่เล็กที่สุด