กรงเล็บเป็น{1,3} อัลกอริทึมที่น่ารำคาญจะตรวจสอบกรงเล็บในเวลา มันสามารถทำได้ในโดยที่คือเลขชี้กำลังของการคูณเมทริกซ์เร็วดังนี้: ใช้กราฟย่อยที่เหนี่ยวนำโดยสำหรับแต่ละจุดยอดและหารูปสามเหลี่ยมใน ส่วนประกอบของมัน
เท่าที่ฉันรู้ขั้นตอนวิธีพื้นฐานเหล่านี้เป็นที่รู้จักกันเท่านั้น Spinrad ระบุไว้ในหนังสือของเขา "การเป็นตัวแทนกราฟที่มีประสิทธิภาพ" การตรวจสอบกรงเล็บในเวลาเป็นปัญหาเปิด (8.3, หน้า 103) สำหรับขอบเขตล่างเรารู้ว่าอัลกอริทึม - เวลาจะหมายถึง - อัลกอริทึมสำหรับการค้นหารูปสามเหลี่ยม ดังนั้นเราอาจพิจารณา\ Omega (n ^ \ omega)เป็นขอบเขตล่าง
คำถาม:
- มีความคืบหน้าเกี่ยวกับเรื่องนี้ไหม หรือความคืบหน้าในการแสดงมันเป็นไปไม่ได้?
- มีปัญหาตามธรรมชาติอื่น ๆ อีกหรือไม่กับ - อัลกอริธึมที่ดีที่สุด?
ข้อสังเกต:
- ฉันขอการตรวจจับกรงเล็บอย่างชัดเจนแทนที่จะรับรู้กราฟที่ปราศจากกรงเล็บ แม้ว่าอัลกอริทึมมักจะแก้ปัญหาทั้งสองอย่างมีข้อยกเว้นเล็กน้อย
- มีการอ้างสิทธิ์ใน Handbook of Algorithms และ Theoretical Computer Science ว่าสามารถพบได้ในเวลาเชิงเส้น แต่เป็นเพียงการพิมพ์ผิด (ดู "การแสดงกราฟที่มีประสิทธิภาพ")