ว่าฉันทำงานในทฤษฎีประเภท homotopyและวัตถุการศึกษาของฉันเป็นหมวดหมู่ทั่วไป
ความเท่าเทียมกันที่นี่ได้รับจาก functorsและ ซึ่งให้ความสมดุลของหมวดD} มี isomorphisms ตามธรรมชาติและเพื่อให้ functor นี้และ "inverse" functor จะถูกแปลงเป็น functor หน่วย
ตอนนี้univalenceเกี่ยวข้องกับการเทียบเคียงกับเอกลักษณ์ประเภทของทฤษฎีประเภทเจตนาฉันเลือกที่จะพูดคุยเกี่ยวกับหมวดหมู่ เนื่องจากฉันจัดการกับหมวดหมู่เท่านั้นและสิ่งเหล่านั้นเทียบเท่าหากพวกเขามีโครงกระดูกแบบ isomorphic ฉันจึงสงสัยว่าฉันสามารถแสดงความจริงที่เป็นเอกภาพในแง่ของการส่งผ่านไปยังโครงกระดูกของหมวดหมู่
หรือมิฉะนั้นฉันสามารถกำหนดประเภทของตัวตนคือการแสดงออกทางสีหน้า ในทางที่บอกว่า "มีโครงกระดูก (หรือ isomorphi) และและทั้งคู่มีค่าเท่ากัน "?
(ในข้างต้นฉันพยายามตีความทฤษฎีประเภทในแง่ของแนวคิดที่ง่ายต่อการนิยาม - แนวคิดทางทฤษฎีหมวดหมู่ฉันคิดเกี่ยวกับเรื่องนี้เพราะในทางศีลธรรมมันดูเหมือนว่าฉันว่าสัจพจน์ "แก้ไข" ทฤษฎีประเภทเจตนาโดยการเข้ารหัสยากหลักการสมดุลที่มีอยู่แล้วส่วนหนึ่งของธรรมชาติของการกำหนดประเภทงบทฤษฎีเช่นระบุวัตถุเพียง แต่ในแง่คุณสมบัติสากล.)