คุณมักจะพบวิธีการตัดระนาบ, การขยายพันธุ์ตัวแปร, สาขาและขอบเขต, การเรียนรู้ประโยค, การย้อนรอยอย่างชาญฉลาดหรือแม้กระทั่งการทำฮิวริสติกของมนุษย์ในการแก้ปัญหา SAT ทว่านักแก้ปัญหา SAT ที่ดีที่สุดใช้เทคนิคการพิสูจน์ความละเอียดอย่างหนักมาหลายสิบปีและใช้การรวมกันของสิ่งอื่น ๆ เพื่อช่วยในการค้นหาและค้นหาสไตล์ความละเอียด เห็นได้ชัดว่ามันเป็นที่สงสัยว่าอัลกอริทึมใด ๆ จะล้มเหลวในการตัดสินใจคำถามความพึงพอใจในเวลาพหุนามอย่างน้อยในบางกรณี
ในปี 1985, Haken ได้รับการพิสูจน์ในบทความของเขาว่า "ความสามารถในการแก้ไขปัญหา"ที่หลักการหลุมของนกพิราบที่เข้ารหัสใน CNF ไม่ยอมรับการพิสูจน์พหุนามขนาด ในขณะที่สิ่งนี้พิสูจน์ให้เห็นบางอย่างเกี่ยวกับความสามารถในการแทรกซึมของอัลกอริธึมที่ใช้ความละเอียด แต่ก็ให้เกณฑ์ที่นักตัดสินขอบตัดสามารถตัดสินได้ - และในความเป็นจริงหนึ่งในข้อควรพิจารณาหลายอย่างที่ออกแบบการแก้ SAT ในกรณีที่ 'ยาก' ที่รู้จักกัน
การมีรายการคลาสของสูตรบูลีนที่พิสูจน์ได้ว่าพิสูจน์ความละเอียดขนาดเอ็กซ์โปเนนเชียลมีประโยชน์ในแง่ที่มันให้สูตร 'ยาก' เพื่อทดสอบตัวแก้ SAT ใหม่ มีการทำงานอะไรในการรวบรวมคลาสดังกล่าวด้วยกัน? ใครบ้างมีการอ้างอิงที่มีรายการดังกล่าวและหลักฐานที่เกี่ยวข้อง? โปรดระบุสูตรบูลีนหนึ่งคลาสต่อคำตอบ