คำถามติดแท็ก kolmogorov-axioms

10
มีพื้นฐานทางคณิตศาสตร์สำหรับการถกเถียงแบบเบย์กับการถกเถียงกันบ่อยๆหรือไม่?
มันพูดในWikipediaว่า: คณิตศาสตร์ [ของความน่าจะเป็น] ส่วนใหญ่เป็นอิสระจากการตีความความน่าจะเป็นใด ๆ คำถาม:แล้วถ้าเราต้องการที่จะมีความถูกต้องทางคณิตศาสตร์ไม่ควรที่เราไม่อนุญาตใด ๆความหมายของความน่าจะเป็น? คือทั้งแบบเบย์และความถี่ที่ไม่ถูกต้องทางคณิตศาสตร์? ฉันไม่ชอบปรัชญา แต่ฉันชอบวิชาคณิตศาสตร์และฉันต้องการทำงานเฉพาะภายในกรอบของสัจพจน์ของ Kolmogorov หากนี่คือเป้าหมายของฉันควรปฏิบัติตามสิ่งที่กล่าวไว้ใน Wikipedia ว่าฉันควรปฏิเสธทั้ง Bayesianism และบ่อยครั้งหรือไม่ หากแนวคิดมีปรัชญาล้วนๆและไม่ใช่คณิตศาสตร์เลยทำไมพวกเขาจึงปรากฏเป็นสถิติตั้งแต่แรก? ความเป็นมา / บริบท: โพสต์บล็อกนี้ไม่ได้พูดเหมือนกัน แต่มันก็เถียงว่าการพยายามจำแนกเทคนิคเป็น "Bayesian" หรือ "บ่อยครั้ง" นั้นตอบโต้จากมุมมองเชิงปฏิบัติ หากการอ้างอิงจาก Wikipedia เป็นจริงดูเหมือนว่าจากมุมมองทางปรัชญาที่พยายามจำแนกวิธีการทางสถิติก็เป็นวิธีที่มีประสิทธิผลเช่นกันหากวิธีการทางคณิตศาสตร์นั้นถูกต้องก็จะใช้วิธีการเมื่อสมมติฐานของคณิตศาสตร์พื้นฐาน ถือมิฉะนั้นหากไม่ถูกต้องทางคณิตศาสตร์หรือหากสมมติฐานไม่ได้ถือไว้ก็ไม่สามารถใช้งานได้ ในทางกลับกันผู้คนจำนวนมากดูเหมือนจะระบุ "การอนุมานแบบเบย์" ด้วยทฤษฎีความน่าจะเป็น (เช่นสัจพจน์ของ Kolmogorov) แม้ว่าฉันจะไม่แน่ใจว่าทำไม ตัวอย่างบางส่วนเป็นบทความของ Jaynes เกี่ยวกับการอนุมานแบบเบย์ที่เรียกว่า "ความน่าจะเป็น" เช่นเดียวกับหนังสือของ James Stone "กฎของ Bayes '" ดังนั้นถ้าฉันใช้การเรียกร้องเหล่านี้ตามมูลค่าหน้าตัวนั่นก็หมายความว่าฉันควรจะชอบลัทธิเบย์มากกว่า อย่างไรก็ตามหนังสือของ Casella และ …


2
หากผลรวมของความน่าจะเป็นของเหตุการณ์เท่ากับความน่าจะเป็นของสหภาพของพวกเขานั่นหมายความว่าเหตุการณ์จะแยกออกจากกันหรือไม่?
ความน่าจะเป็นตามจริงตามจริงคือฟังก์ชันที่กำหนดจำนวนจริงให้กับแต่ละเหตุการณ์หากเป็นไปตามสมมติฐานพื้นฐานสามข้อ (สมมติฐานของ Kolmogorov):P ( A ) APPPP( A )P(A)P(A)AAA P( A ) ≥ 0 สำหรับทุก ๆA P(A)≥0 for everyAP(A) \geq 0 \ \text{for every} A P( Ω ) = 1P(Ω)=1P(\Omega) = 1 ถ้าA 1,2แล้ว⋯ ไม่ปะติดปะต่อกันP( ⋃∞i = 1Aผม) = ∑i = 1∞P( กผม)If A1,A2,⋯are disjoint, thenP(⋃i=1∞Ai)=∑i=1∞P(Ai)\text{If} \ A_1, A_2, \cdots …
โดยการใช้ไซต์ของเรา หมายความว่าคุณได้อ่านและทำความเข้าใจนโยบายคุกกี้และนโยบายความเป็นส่วนตัวของเราแล้ว
Licensed under cc by-sa 3.0 with attribution required.