2
ใช้สัมประสิทธิ์สหสัมพันธ์ของเพียร์สันเป็นเป้าหมายการเพิ่มประสิทธิภาพในการเรียนรู้ของเครื่อง
ในการเรียนรู้ของเครื่อง (สำหรับปัญหาการถดถอย) ฉันมักจะเห็นค่าเฉลี่ย - กำลังสอง - ข้อผิดพลาด (MSE) หรือค่าเฉลี่ย - ข้อผิดพลาด (แม่) ที่ใช้เป็นฟังก์ชันข้อผิดพลาดเพื่อลด (บวกกับข้อกำหนดการทำให้เป็นปกติ) ฉันสงสัยว่ามีสถานการณ์ที่การใช้สัมประสิทธิ์สหสัมพันธ์จะเหมาะสมกว่าหรือไม่ หากสถานการณ์ดังกล่าวมีอยู่แล้ว: ค่าสัมประสิทธิ์สหสัมพันธ์ภายใต้สถานการณ์ใดเป็นตัวชี้วัดที่ดีกว่าเมื่อเทียบกับ MSE / MAE ในสถานการณ์เหล่านี้ MSE / MAE ยังคงเป็นฟังก์ชั่นต้นทุนพร็อกซีที่ดีที่จะใช้หรือไม่? สัมประสิทธิ์สหสัมพันธ์เป็นไปได้สูงสุดหรือไม่ นี่เป็นฟังก์ชั่นวัตถุประสงค์ที่มั่นคงที่จะใช้หรือไม่? ฉันไม่พบกรณีที่มีการใช้สัมประสิทธิ์สหสัมพันธ์โดยตรงเป็นฟังก์ชันวัตถุประสงค์ในการปรับให้เหมาะสม ฉันจะขอบคุณถ้าคนสามารถชี้ให้ฉันข้อมูลในพื้นที่นี้