วิธีการสุ่มตัวอย่าง / การจำลองใหม่: monte carlo, bootstrapping, jackknifing, cross-validation, การทดสอบแบบสุ่มและการทดสอบการเปลี่ยนรูป
ฉันพยายามเข้าใจความแตกต่างระหว่างวิธีการสุ่มใหม่ (การจำลองมอนติคาร์โล, การบูตแบบพาราเมตริก, การบู๊ตแบบไม่มีพารามิเตอร์, การทดสอบแบบสุ่ม, การตรวจสอบข้าม, การทดสอบแบบสุ่มและการเปลี่ยนรูป) และการนำไปใช้ในบริบทของฉันเอง ว่าฉันมีสถานการณ์ดังต่อไปนี้ - ฉันต้องการดำเนินการ ANOVA ด้วยตัวแปรY ( Yvar) และX variable ( Xvar) Xvarเป็นหมวดหมู่ ฉันสนใจในสิ่งต่อไปนี้: (1) ความสำคัญของ p-values - อัตราการค้นพบที่ผิด (2) ขนาดผลของXvarระดับ Yvar <- c(8,9,10,13,12, 14,18,12,8,9, 1,3,2,3,4) Xvar <- c(rep("A", 5), rep("B", 5), rep("C", 5)) mydf <- data.frame (Yvar, Xvar) คุณช่วยให้ฉันอธิบายความแตกต่างของการสุ่มตัวอย่างด้วยตัวอย่างงานที่ชัดเจนว่าวิธีการสุ่มตัวอย่างใหม่นี้ทำงานอย่างไร การแก้ไข: นี่คือความพยายามของฉัน: Bootstrap …