คำถามติดแท็ก splines

เส้นโค้งเป็นฟังก์ชั่นที่ยืดหยุ่นถักด้วยกันจากชิ้นส่วนพหุนามใช้สำหรับการประมาณหรือการปรับให้เรียบ แท็กนี้มีไว้สำหรับเส้นโค้งทุกชนิด (เช่นเส้นโค้ง B, เส้นโค้งถดถอย, เส้นโค้งบางแผ่น, ฯลฯ )

1
รูปแบบเอฟเฟกต์ผสมกับเส้นโค้ง
ฉันเหมาะสมกับโมเดลเอฟเฟกต์ผสมกับคำที่เป็นอิสระในแอปพลิเคชันซึ่งมีแนวโน้มว่าเมื่อเวลาผ่านไปเป็นเส้นโค้งเชิงเส้น อย่างไรก็ตามสิ่งที่ฉันต้องการประเมินคือแนวโน้มของเส้นโค้งเชิงเส้นเกิดขึ้นเนื่องจากความเบี่ยงเบนของแต่ละบุคคลจากเส้นตรงหรือเป็นผลกระทบในระดับกลุ่มที่ทำให้ระดับกลุ่มพอดีปรากฏเป็นเส้นโค้ง ฉันให้ตัวอย่างที่ทำซ้ำได้ซึ่งน่าเบื่อชุดข้อมูลจากแพ็คเกจ JM library(nlme) library(JM) data(pbc2) fitLME1 <- lme(log(serBilir) ~ ns(year, 2), random = ~ year | id, data = pbc2) fitLME2 <- lme(log(serBilir) ~ year, random = ~ ns(year, 2) | id, data = pbc2) โดยพื้นฐานแล้วฉันต้องการทราบว่าหนึ่งในสิ่งเหล่านี้เหมาะกับข้อมูลของฉัน อย่างไรก็ตามการเปรียบเทียบโดยanovaให้คำเตือนเป็นลางไม่ดี: Model df AIC BIC logLik Test L.Ratio p-value fitLME1 1 7 …
9 r  splines  lme4-nlme 

2
การทดสอบย้อนกลับหรือการตรวจสอบความถูกต้องข้ามเมื่อกระบวนการสร้างแบบจำลองเป็นแบบโต้ตอบ
ฉันมีตัวแบบทำนายผลซึ่งฉันต้องการทดสอบกลับ (เช่นนำชุดข้อมูลของฉัน "ย้อนกลับ" ไปยังจุดก่อนหน้าในเวลาและดูว่าตัวแบบนั้นจะทำแบบมุ่งหวังได้อย่างไร) ปัญหาคือว่าบางรุ่นของฉันถูกสร้างขึ้นผ่านกระบวนการโต้ตอบ ตัวอย่างเช่นทำตามคำแนะนำในกลยุทธ์การสร้างแบบจำลองการถดถอยของ Frank Harrell ในแบบจำลองหนึ่งฉันใช้ splines ลูกบาศก์แบบ จำกัด เพื่อจัดการความสัมพันธ์แบบไม่เชิงเส้นที่เป็นไปได้ระหว่างคุณลักษณะและการตอบสนอง ฉันจัดสรรระดับความเป็นอิสระของแต่ละอิสระขึ้นอยู่กับการรวมกันของความรู้ในโดเมนและการวัดความแข็งแกร่งของสมาคม แต่องศาอิสระที่ฉันต้องการอนุญาตให้แบบจำลองของฉันขึ้นอยู่กับขนาดของชุดข้อมูลซึ่งแตกต่างกันอย่างมากเมื่อทำการทดสอบย้อนหลัง หากฉันไม่ต้องการแยกองศาอิสระแยกจากกันในแต่ละครั้งที่รุ่นถูกทดสอบซ้ำตัวเลือกอื่นของฉันคืออะไร สำหรับตัวอย่างอื่นฉันกำลังตรวจจับค่าผิดปกติผ่านการหาจุดที่มีเลเวอเรจสูง ถ้าฉันมีความสุขที่จะทำสิ่งนี้ด้วยมือฉันจะดูที่จุดข้อมูลที่มีประโยชน์สูงแต่ละจุดตรวจสอบอย่างมีเหตุผลว่าข้อมูลนั้นสะอาดและกรองออกหรือทำความสะอาดด้วยมือ แต่สิ่งนี้ขึ้นอยู่กับความรู้เกี่ยวกับโดเมนจำนวนมากดังนั้นฉันจึงไม่ทราบวิธีการดำเนินการอัตโนมัติ ฉันขอขอบคุณคำแนะนำและวิธีแก้ปัญหาทั้งสอง (ก) ถึงปัญหาทั่วไปของการสร้างส่วนโต้ตอบอัตโนมัติของกระบวนการสร้างแบบจำลองหรือ (ข) คำแนะนำเฉพาะสำหรับสองกรณีนี้ ขอบคุณ!

3
การเลือก k knots ในการถดถอยเส้นโค้งที่ราบเรียบเทียบเท่ากับตัวแปรเด็ดขาด k?
ฉันกำลังทำงานกับแบบจำลองการคาดการณ์ที่อายุของผู้ป่วย (จำนวนเต็มวัดเป็นปี) เป็นหนึ่งในตัวแปรตัวทำนาย ความสัมพันธ์แบบไม่เชิงเส้นที่แข็งแกร่งระหว่างอายุและความเสี่ยงของการเข้าพักในโรงพยาบาลจะเห็นได้ชัด: ฉันกำลังพิจารณาว่าการทำให้เส้นโค้งการถดถอยเป็นไปอย่างราบรื่นสำหรับผู้ป่วยอายุ ตามองค์ประกอบของการเรียนรู้ทางสถิติ (Hastie et al, 2009, p.151) ตำแหน่งปมที่ดีที่สุดคือหนึ่งปมต่อค่าที่ไม่ซ้ำกันของอายุสมาชิก ระบุว่าฉันรักษาอายุเป็นจำนวนเต็มเป็น spline ปรับลงโทษให้เรียบเพื่อเรียกใช้สันเขาถดถอยหรือ lasso กับ 101 ตัวบ่งชี้ตัวแปรอายุที่แตกต่างกันหนึ่งค่าต่ออายุพบในชุดข้อมูล (ลบหนึ่งสำหรับการอ้างอิง)? การหลีกเลี่ยงค่าพารามิเตอร์มากเกินไปนั้นจะถูกหลีกเลี่ยงเนื่องจากค่าสัมประสิทธิ์ของตัวบ่งชี้อายุแต่ละตัวนั้นหดตัวลงไปเป็นศูนย์

3
Spline df selection ในปัญหาโมเดลเสริมปัวซองทั่วไป
ฉันได้รับการกระชับข้อมูลอนุกรมเวลาโดยใช้รูปแบบการเติมแต่งทั่วไป Poisson ใช้ PROC GAMSAS โดยทั่วไปฉันมีกระบวนการตรวจสอบข้ามแบบทั่วไปในตัวแล้วสร้าง "จุดเริ่มต้น" ที่ดีสำหรับเส้นโค้งเดี่ยวของฉันซึ่งเป็นฟังก์ชันที่ไม่ใช่เชิงเส้นของเวลาพร้อมกับคำพารามิเตอร์เดียว (อันที่ฉัน สนใจจริงๆ) จนถึงตอนนี้มันทำงานได้ค่อนข้างว่ายน้ำยกเว้นหนึ่งในชุดข้อมูลของฉัน มีการสังเกตในชุดข้อมูล 132 ชุดและ GCV แนะนำให้มีอิสระในระดับ 128 องศา ดูเหมือนว่า ... ผิด ผิดมาก ที่สำคัญมันยังไม่เสถียรเลย ฉันลองวิธีที่สองโดยใช้บางอย่างเช่น "เปลี่ยนค่าประมาณ" เพื่อหยุดเพิ่มองศาอิสระเมื่อการประมาณค่าพารามิเตอร์หยุดหยุดการเปลี่ยนแปลงเพราะเหตุใดจึงต้องเพิ่มการควบคุมหากไม่มีอะไรแตกต่างกัน ปัญหาคือว่าการประมาณการไม่เสถียรเลย ฉันลองใช้องศาอิสระดังต่อไปนี้และอย่างที่คุณเห็นคำศัพท์เกี่ยวกับพารามิเตอร์จะเด้งไปมาอย่างดุเดือด: DF: Parametric Estimate: 1 -0.76903 2 -0.56308 3 -0.47103 4 -0.43631 5 -0.33108 6 -0.1495 7 0.0743 8 0.33459 9 0.62413 10 …

2
คำนวณ ROC curve สำหรับข้อมูล
ดังนั้นฉันมีการทดลอง 16 ครั้งที่ฉันพยายามพิสูจน์ตัวตนบุคคลจากลักษณะทางชีวภาพโดยใช้ Hamming Distance เกณฑ์ของฉันถูกตั้งไว้ที่ 3.5 ข้อมูลของฉันอยู่ด้านล่างและเฉพาะการทดลองใช้ 1 เท่านั้นคือ True Positive: Trial Hamming Distance 1 0.34 2 0.37 3 0.34 4 0.29 5 0.55 6 0.47 7 0.47 8 0.32 9 0.39 10 0.45 11 0.42 12 0.37 13 0.66 14 0.39 15 0.44 16 0.39 จุดสับสนของฉันคือฉันไม่แน่ใจจริงๆเกี่ยวกับวิธีสร้าง ROC curve …
9 mathematical-statistics  roc  classification  cross-validation  pac-learning  r  anova  survival  hazard  machine-learning  data-mining  hypothesis-testing  regression  random-variable  non-independent  normal-distribution  approximation  central-limit-theorem  interpolation  splines  distributions  kernel-smoothing  r  data-visualization  ggplot2  distributions  binomial  random-variable  poisson-distribution  simulation  kalman-filter  regression  lasso  regularization  lme4-nlme  model-selection  aic  r  mcmc  dlm  particle-filter  r  panel-data  multilevel-analysis  model-selection  entropy  graphical-model  r  distributions  quantiles  qq-plot  svm  matlab  regression  lasso  regularization  entropy  inference  r  distributions  dataset  algorithms  matrix-decomposition  regression  modeling  interaction  regularization  expected-value  exponential  gamma-distribution  mcmc  gibbs  probability  self-study  normality-assumption  naive-bayes  bayes-optimal-classifier  standard-deviation  classification  optimization  control-chart  engineering-statistics  regression  lasso  regularization  regression  references  lasso  regularization  elastic-net  r  distributions  aggregation  clustering  algorithms  regression  correlation  modeling  distributions  time-series  standard-deviation  goodness-of-fit  hypothesis-testing  statistical-significance  sample  binary-data  estimation  random-variable  interpolation  distributions  probability  chi-squared  predictor  outliers  regression  modeling  interaction 
โดยการใช้ไซต์ของเรา หมายความว่าคุณได้อ่านและทำความเข้าใจนโยบายคุกกี้และนโยบายความเป็นส่วนตัวของเราแล้ว
Licensed under cc by-sa 3.0 with attribution required.