ทำไมการคาดคะเนบันทึกอันดับจึงใช้อันดับเหนือ reals


10

ในความซับซ้อนของการสื่อสารการคาดคะเนอันดับบันทึกระบุว่า

(M)=(เข้าสู่ระบบRk(M))O(1)

โดยที่คือความซับซ้อนของการสื่อสารของM ( x , y )และr k ( M )คืออันดับของM (เป็นเมทริกซ์) เหนือ reals(M)M(x,Y)Rk(M)M

อย่างไรก็ตามเมื่อคุณใช้วิธีการจัดลำดับเพื่อลดขอบเขตคุณสามารถใช้r kบนฟิลด์ใดก็ได้ที่สะดวก ทำไมการคาดคะเนบันทึกอันดับจึง จำกัด ที่ rk มากกว่า reals? การคาดเดาได้รับการแก้ไขสำหรับr kเหนือฟิลด์ที่มีลักษณะไม่เป็นศูนย์หรือไม่? ถ้าไม่เป็นที่น่าสนใจหรือมีบางสิ่งที่พิเศษเกี่ยวกับr kมากกว่าRหรือไม่?(M)RkRkRkR


2
BTW ฉันเชื่อว่าคุณควร จำกัดให้เป็นเลขฐานสองมิฉะนั้นคุณสามารถทำตัวอย่างที่น่ารำคาญได้ M
Sasho Nikolov

@SashoNikolov คุณหมายถึงอะไรโดย counterexamples เล็กน้อยถ้าไม่ได้เป็น0 / 1 (ผมเชื่อว่าคุณหมายถึงมากกว่า reals)? M0/1
T ....

ตัวอย่างเช่นปัญหา "เดาหมายเลขของฉัน" คืออลิซมีตัวเลขในและ Bob ต้องส่งออก มันเป็นเรื่องง่ายที่จะเห็นความซับซ้อนของการสื่อสารเข้าสู่ระบบNแต่อันดับของเมทริกซ์คือ1 {1,...,ยังไม่มีข้อความ}เข้าสู่ระบบยังไม่มีข้อความ1
Sasho Nikolov

@SashoNikolov คุณช่วยกำหนดเดาหมายเลขของฉันได้อย่างแม่นยำหรือไม่? ฉันไม่สามารถมองเห็นเมทริกซ์คุณลักษณะ อลิซมีและ Bob มีyแล้วฟังก์ชันf ( x , y )ที่Mอันดับ1ถูกกำหนดไว้คืออะไร xY(x,Y)M1
T ....

1
ฟังก์ชั่นคือโดยที่xและyเป็นเวกเตอร์บิตn ถ้าความหมายของความซับซ้อนของการสื่อสารที่ต้องการให้ค่าของถูกกำหนดโดยสิ้นเชิงหลักฐานการโปรโตคอล (นี่คือความหมายใน Kushilevitz-นิสัน) แล้วอย่างชัดเจนซับซ้อนเป็นn (x,Y)=xxYnn
Sasho Nikolov

คำตอบ:


14

การคาดคะเนล้มเหลวมากกว่า 2 ดูที่M ( x , Y ) = x , y ที่mod 2และx , y ที่{ 0 , 1 } n ความซับซ้อนของการสื่อสารคือΩ ( n )แต่อันดับของMเหนือF 2คือnโดยความเป็นเส้นตรงของผลิตภัณฑ์ภายในF2M(x,Y)=x,Yพอควร2x,Y{0,1}nΩ(n)MF2n

โดยการใช้ไซต์ของเรา หมายความว่าคุณได้อ่านและทำความเข้าใจนโยบายคุกกี้และนโยบายความเป็นส่วนตัวของเราแล้ว
Licensed under cc by-sa 3.0 with attribution required.