เรื่องนี้ดูเหมือนจะเป็นจริงในบริบทของวิทยาศาสตร์คอมพิวเตอร์ (บางพื้นที่) แต่ไม่ใช่โดยทั่วไป
เหตุผลหนึ่งที่เกี่ยวข้องกับวิทยานิพนธ์ของศาสนจักร เหตุผลหลักคือผู้เชี่ยวชาญบางคนเช่น Godel ไม่ได้คิดว่าข้อโต้แย้งที่การคำนวณแบบก่อนหน้า / แบบอื่น ๆ จับแนวคิดการคำนวณที่ใช้งานง่ายได้อย่างน่าเชื่อถือ มีข้อโต้แย้งต่าง ๆ คริสตจักรมีบางอย่าง แต่พวกเขาไม่เชื่อ Godel ในทางตรงกันข้ามการวิเคราะห์ทัวริงก็น่าเชื่อสำหรับเกอเดลจึงได้รับการยอมรับเป็นแบบจำลองสำหรับการคำนวณที่มีประสิทธิภาพ ความเท่าเทียมกันระหว่างแบบจำลองต่าง ๆ ได้รับการพิสูจน์ในภายหลัง (ฉันคิดโดย Kleene)
λμ
μλ. ดูเอกสารเหล่านี้โดย Viggo Stoltenberg-Hansen และ John V. Tucker I , IIด้วย)
ทรัพยากรบางอย่างสำหรับการอ่านเพิ่มเติม:
Robert I. Soareมีบทความจำนวนหนึ่งเกี่ยวกับประวัติความเป็นมาของการพัฒนาเหล่านี้ผมชอบบทความในคู่มือทฤษฎีการคำนวณ คุณสามารถหาข้อมูลเพิ่มเติมได้จากการตรวจสอบการอ้างอิงในบทความนั้น
แหล่งข้อมูลที่ดีอีกข้อคือบทความการคำนวณความสามารถในการคำนวณของ Neil Immerman ใน SEP โปรดดูบทความวิทยานิพนธ์ของโบสถ์แห่งทัวริงโดย B. Jack Copeland
ของGödel รวบรวมผลงานที่มีจำนวนมากของข้อมูลเกี่ยวกับมุมมองของเขา การแนะนำบทความของเขาเป็นพิเศษนั้นเขียนได้ดีมาก
" Metamathematics " ของ Kleene เป็นหนังสือที่ดีมาก
ท้ายที่สุดถ้าคุณยังไม่พอใจให้ตรวจสอบไฟล์เก็บถาวรของรายการส่งเมล FOMและหากคุณไม่พบคำตอบในไฟล์เก็บถาวรจะโพสต์อีเมลไปยังรายการจดหมาย