3
วัตถุประสงค์ของการใช้การรวมโดยชิ้นส่วนในการทำให้รูปแบบที่อ่อนแอสำหรับ discretization FEM คืออะไร?
เมื่อไปจากรูปแบบที่แข็งแกร่งของ PDE ไปยังรูปแบบ FEM ดูเหมือนว่าเราควรทำสิ่งนี้เสมอโดยระบุรูปแบบความแปรปรวนเป็นครั้งแรก ในการทำเช่นนี้คุณจะคูณแบบฟอร์มที่แข็งแกร่งด้วยองค์ประกอบในพื้นที่ (Sobolev) และรวมเข้ากับภูมิภาคของคุณ ฉันยอมรับได้ สิ่งที่ฉันไม่เข้าใจคือเหตุผลว่าทำไมจึงต้องใช้สูตรของกรีน (หนึ่งหรือหลายครั้ง) ฉันได้ทำงานกับสมการของปัวซงเป็นส่วนใหญ่ดังนั้นถ้าเราใช้มัน (กับเงื่อนไขขอบเขต Dirichlet ที่เป็นเนื้อเดียวกัน) เป็นตัวอย่างเช่น −∇2uu=f,u∈Ω=0,u∈∂Ω−∇2u=f,u∈Ωu=0,u∈∂Ω \begin{align} -\nabla^2u &= f,\quad u\in\Omega \\ u &= 0, \quad u\in\partial\Omega \end{align} มันก็อ้างว่าวิธีที่ถูกต้องในรูปแบบรูปแบบความแปรปรวนคือ ∫Ωfvdx⃗ =−∫Ω∇2uvdx⃗ =∫Ω∇u⋅∇vdx⃗ −∫∂Ωn⃗ ⋅∇uvds⃗ =∫Ω∇u⋅∇vdx⃗ .∫Ωfvdx→=−∫Ω∇2uvdx→=∫Ω∇u⋅∇vdx→−∫∂Ωn→⋅∇uvds→=∫Ω∇u⋅∇vdx→. \begin{align} \int_\Omega fv\,\mathrm{d}\vec{x} &= -\int_\Omega\nabla^2 uv\,\mathrm{d}\vec{x} \\ &=\int_\Omega\nabla u\cdot\nabla v\,\mathrm{d}\vec{x} - \int_{\partial\Omega}\vec{n}\cdot\nabla u …