2
ตัวแปรสำคัญจาก GLMNET
ฉันกำลังดูการใช้ lasso เป็นวิธีการเลือกคุณสมบัติและปรับโมเดลการทำนายให้เหมาะสมกับเป้าหมายไบนารี ด้านล่างนี้เป็นรหัสที่ฉันเล่นด้วยเพื่อลองใช้วิธีที่มีการถดถอยโลจิสติกปกติ คำถามของฉันคือฉันได้รับกลุ่มตัวแปร "สำคัญ" แต่ฉันสามารถจัดอันดับสิ่งเหล่านี้เพื่อประเมินความสำคัญสัมพัทธ์ของแต่ละรายการได้หรือไม่ สัมประสิทธิ์สามารถเป็นมาตรฐานสำหรับจุดประสงค์ของการจัดอันดับนี้ด้วยค่าสัมบูรณ์ (ฉันเข้าใจว่าพวกเขาจะแสดงในระดับตัวแปรดั้งเดิมผ่านcoefฟังก์ชั่น)? หากดังนั้นวิธีที่จะทำเช่นนั้น (ใช้ค่าเบี่ยงเบนมาตรฐานของ x และ y) วางมาตรฐานค่าสัมประสิทธิ์การถดถอย รหัสตัวอย่าง: library(glmnet) #data comes from #http://archive.ics.uci.edu/ml/datasets/Breast+Cancer+Wisconsin+(Diagnostic) datasetTest <- read.csv('C:/Documents and Settings/E997608/Desktop/wdbc.data.txt',head=FALSE) #appears to use the first level as the target success datasetTest$V2<-as.factor(ifelse(as.character(datasetTest$V2)=="M","0","1")) #cross validation to find optimal lambda #using the lasso because alpha=1 cv.result<-cv.glmnet( x=as.matrix(dataset[,3:ncol(datasetTest)]), …