2
การเพิ่มจำนวนฟีเจอร์จะส่งผลให้ความแม่นยำลดลง แต่เพิ่มขึ้น / จำได้เร็วขึ้น
ฉันยังใหม่กับการเรียนรู้ของเครื่อง ในขณะนี้ฉันใช้ตัวจําแนก Naive Bayes (NB) เพื่อจัดประเภทข้อความขนาดเล็กใน 3 คลาสเป็นค่าบวกลบหรือเป็นกลางโดยใช้ NLTK และ python หลังจากทำการทดสอบด้วยชุดข้อมูลที่ประกอบด้วย 300,000 อินสแตนซ์ (ลบ 16,924 บวก 7,477 เชิงลบและ 275,599 นิวทรัล) ฉันพบว่าเมื่อฉันเพิ่มจำนวนฟีเจอร์ความแม่นยำจะลดลง แต่ความแม่นยำ / การเรียกคืนสำหรับคลาสบวกและลบ นี่เป็นพฤติกรรมปกติของลักษณนาม NB หรือไม่? เราสามารถพูดได้หรือไม่ว่าจะเป็นการดีกว่าถ้าใช้คุณสมบัติเพิ่มเติม ข้อมูลบางส่วน: Features: 50 Accuracy: 0.88199 F_Measure Class Neutral 0.938299 F_Measure Class Positive 0.195742 F_Measure Class Negative 0.065596 Features: 500 Accuracy: 0.822573 …