1
เมื่อใดจึงจะใช้ปัวซองเทียบกับเรขาคณิตเทียบกับลบทวินาม GLMs สำหรับการนับข้อมูล?
ฉันพยายามจัดโครงร่างสำหรับตัวเองเมื่อเหมาะสมที่จะใช้ประเภทการถดถอย (เรขาคณิต, ปัวซอง, ลบทวินาม) กับข้อมูลการนับภายในกรอบการทำงาน GLM (ใช้การกระจายแบบ GLM เพียง 3 ใน 8 เท่านั้นสำหรับข้อมูลการนับ ฉันอ่านศูนย์รอบทวินามลบและการแจกแจงปัวซง) เมื่อใดจึงจะใช้ปัวซองเทียบกับเรขาคณิตเทียบกับลบทวินาม GLMs สำหรับการนับข้อมูล? จนถึงตอนนี้ฉันมีตรรกะดังต่อไปนี้: มันนับข้อมูลหรือไม่ ถ้าใช่ค่าเฉลี่ยและความแปรปรวนไม่เท่ากันหรือไม่? ถ้าใช่การถดถอยแบบทวินามลบ ถ้าไม่มีปัวซงถดถอย มีอัตราเงินเฟ้อเป็นศูนย์หรือไม่? ถ้าใช่ปัวซองกำลังพองศูนย์หรือทวินามลบพอง คำถามที่ 1ดูเหมือนจะไม่มีข้อบ่งชี้ที่ชัดเจนว่าจะใช้เมื่อใด มีบางอย่างที่ต้องแจ้งการตัดสินใจนั้นหรือไม่? จากสิ่งที่ฉันเข้าใจเมื่อคุณเปลี่ยนไปใช้ ZIP ความแปรปรวนเฉลี่ยที่เป็นสมมติฐานที่เท่าเทียมกันนั้นค่อนข้างผ่อนคลายดังนั้นมันจึงค่อนข้างคล้ายกับ NB อีกครั้ง คำถามที่ 2ตระกูลเรขาคณิตสอดคล้องกับเรื่องนี้หรือคำถามประเภทใดที่ฉันควรถามข้อมูลเมื่อตัดสินใจว่าจะใช้ตระกูลเรขาคณิตในการถดถอยของฉันหรือไม่ คำถามที่ 3ฉันเห็นผู้คนแลกเปลี่ยนการแจกแจงทวินามและปัวซงตลอดเวลา แต่ไม่ใช่เชิงเรขาคณิตดังนั้นฉันเดาว่ามีบางอย่างที่แตกต่างกันอย่างชัดเจนว่าจะใช้เมื่อไร ถ้าเป็นเช่นนั้นมันคืออะไร? ป.ล. ฉันได้ทำแผนภาพ (อาจจะเกินความจริง) จากความคิดเห็น) ( แก้ไขได้ ) ของความเข้าใจปัจจุบันของฉันหากผู้คนต้องการแสดงความคิดเห็น / ปรับแต่งเพื่อการอภิปราย