1
การย่อยสลายความแปรปรวนแบบอคติ
ในส่วนที่ 3.2 ของการจดจำรูปแบบของอธิการและการเรียนรู้ของเครื่องจักรเขากล่าวถึงการสลายตัวของความแปรปรวนแบบอคติโดยระบุว่าสำหรับฟังก์ชันการสูญเสียกำลังสองการสูญเสียที่คาดหวังสามารถแยกย่อยเป็นระยะอคติกำลังสอง (ซึ่งอธิบายว่า รุ่น), คำแปรปรวน (ซึ่งอธิบายการแพร่กระจายของการทำนายรอบค่าเฉลี่ย) และคำที่มีเสียงรบกวน (ซึ่งให้เสียงที่แท้จริงของข้อมูล) สามารถทำการไบอัส - แปรปรวนการสลายตัวด้วยฟังก์ชั่นการสูญเสียอื่น ๆ นอกเหนือจากการสูญเสียกำลังสอง? สำหรับชุดข้อมูลโมเดลที่กำหนดมีมากกว่าหนึ่งโมเดลที่มีการสูญเสียที่คาดว่าจะต่ำกว่าทุกโมเดลและถ้าเป็นเช่นนั้นนั่นหมายความว่าอาจมีการผสมผสานระหว่างอคติและความแปรปรวนต่างกัน หากแบบจำลองเกี่ยวข้องกับการทำให้เป็นมาตรฐานจะมีความสัมพันธ์ทางคณิตศาสตร์ระหว่างอคติความแปรปรวนและสัมประสิทธิ์การทำให้เป็นมาตรฐานหรือไม่?λλ\lambda คุณจะคำนวณอคติได้อย่างไรถ้าคุณไม่รู้รูปแบบที่แท้จริง? มีสถานการณ์ที่เหมาะสมหรือไม่ที่จะลดอคติหรือความแปรปรวนมากกว่าการสูญเสียที่คาดหวังไว้ (ผลรวมของความเอนเอียงและความแปรปรวนกำลังสอง)