คำถามติดแท็ก mixed-model

แบบผสม (aka หลายระดับหรือลำดับชั้น) เป็นโมเดลเชิงเส้นที่มีทั้งเอฟเฟกต์คงที่และเอฟเฟกต์แบบสุ่ม พวกเขาจะใช้ในการจำลองข้อมูลระยะยาวหรือซ้อน

2
ความไม่ลงรอยกันครั้งใหญ่ในการประเมินความชันเมื่อกลุ่มได้รับการปฏิบัติแบบสุ่มและคงที่ในรูปแบบผสม
ฉันเข้าใจว่าเราใช้แบบจำลองเอฟเฟกต์แบบสุ่ม (หรือเอ็ฟเฟ็กต์แบบผสม) เมื่อเราเชื่อว่าพารามิเตอร์โมเดลบางตัวมีการสุ่มแตกต่างกันตามปัจจัยการจัดกลุ่ม ฉันมีความปรารถนาที่จะสร้างแบบจำลองที่การตอบสนองได้รับการทำให้เป็นมาตรฐานและเป็นศูนย์กลาง (ไม่สมบูรณ์แบบ แต่ใกล้เคียงกันมาก) กับปัจจัยการจัดกลุ่ม แต่ตัวแปรอิสระxไม่ได้ถูกปรับในทางใดทางหนึ่ง สิ่งนี้นำฉันไปสู่การทดสอบต่อไปนี้ (โดยใช้ข้อมูลที่สร้างขึ้น ) เพื่อให้แน่ใจว่าฉันจะพบผลกระทบที่ฉันกำลังมองหาถ้ามันมีอยู่จริง ฉันใช้โมเดลเอฟเฟ็กต์แบบผสมหนึ่งแบบโดยมีการสกัดแบบสุ่ม (ข้ามกลุ่มที่กำหนดโดยf) และแบบจำลองเอฟเฟกต์คงที่ที่สองโดยใช้ปัจจัย f เป็นตัวทำนายผลคงที่ ฉันใช้แพ็คเกจ R lmerสำหรับโมเดลเอฟเฟกต์ผสมและฟังก์ชั่นพื้นฐานlm()สำหรับโมเดลเอฟเฟกต์คงที่ ต่อไปนี้เป็นข้อมูลและผลลัพธ์ โปรดสังเกตว่าyโดยไม่คำนึงถึงกลุ่มจะมีค่าประมาณ 0 และxแตกต่างกันไปyตามกลุ่ม แต่จะแตกต่างกันมากในกลุ่มมากกว่าy > data y x f 1 -0.5 2 1 2 0.0 3 1 3 0.5 4 1 4 -0.6 -4 2 5 0.0 -3 2 …

3
เมทริกซ์ความแปรปรวนร่วม - ความแปรปรวนร่วมใน lmer
ฉันรู้ว่าข้อดีอย่างหนึ่งของแบบผสมคือพวกมันอนุญาตให้ระบุเมทริกซ์ความแปรปรวนร่วม - ความแปรปรวนร่วมสำหรับข้อมูล (สมมาตรผสม, อัตชีวประวัติ, ไม่มีโครงสร้าง, ฯลฯ ) อย่างไรก็ตามlmerฟังก์ชันใน R ไม่อนุญาตสเปคง่ายของเมทริกซ์นี้ ไม่มีใครรู้ว่าโครงสร้างที่lmerใช้โดยค่าเริ่มต้นและทำไมไม่มีวิธีการระบุได้อย่างง่ายดาย?

1
ควรคำนวณข้อผิดพลาดมาตรฐานสำหรับการประมาณตัวแบบผสมผลกระทบอย่างไร
โดยเฉพาะอย่างยิ่งควรคำนวณข้อผิดพลาดมาตรฐานของเอฟเฟกต์คงที่ในรูปแบบเอฟเฟกต์แบบผสมเชิงเส้นอย่างไร (ในแง่ที่ใช้บ่อย) ฉันได้รับนำไปสู่การเชื่อว่าประมาณการทั่วไป ( ) เช่นผู้ที่นำเสนอในสกอตแลนด์และสุขภัณฑ์ [1982] จะให้ SE ของที่ได้รับการประเมินในขนาดเพราะ องค์ประกอบความแปรปรวนโดยประมาณได้รับการปฏิบัติเสมือนเป็นค่าที่แท้จริงVar(β^)=(X′VX)−1Var(β^)=(X′VX)−1{\rm Var}(\hat\beta)=(X'VX)^{-1} ฉันสังเกตเห็นว่า SE ที่ผลิตโดยlmeและsummaryฟังก์ชันในnlmeแพ็คเกจสำหรับ R ไม่เท่ากับรากที่สองของเส้นทแยงมุมของเมทริกซ์แปรปรวน - ความแปรปรวนร่วมแปรปรวนที่ให้ไว้ข้างต้น พวกเขาคำนวณอย่างไร ฉันยังอยู่ภายใต้การแสดงผลที่ Bayesians ใช้ inverse gamma priors สำหรับการประเมินส่วนประกอบความแปรปรวน สิ่งเหล่านี้ให้ผลลัพธ์ที่เหมือนกัน (ในการตั้งค่าที่ถูกต้อง) เช่นเดียวกับlme?

3
ข้อผิดพลาดของแบบผสมเชิงเส้น
ข้อผิดพลาดหลักของการใช้โมเดลเอฟเฟกต์แบบผสมคืออะไร อะไรคือสิ่งสำคัญที่สุดในการทดสอบ / ระวังในการประเมินความเหมาะสมของแบบจำลองของคุณ เมื่อเปรียบเทียบแบบจำลองของชุดข้อมูลเดียวกันสิ่งที่สำคัญที่สุดที่ควรมองหาคืออะไร

5
ใช้ lmer สำหรับการทำนาย
สวัสดีฉันมีสองปัญหาที่ฟังเหมือนผู้สมัครทั่วไปสำหรับรุ่นหลายระดับ / ผสมซึ่งฉันไม่เคยใช้ ง่ายขึ้นและสิ่งที่ฉันหวังว่าจะลองเป็นการแนะนำมีดังนี้: ข้อมูลดูเหมือนหลายแถวของแบบฟอร์ม x y innergroup outergroup โดยที่ x คือ covariate ที่เป็นตัวเลขซึ่งฉันต้องการถดถอย y (ตัวแปรตัวเลขอื่น), y แต่ละตัวเป็นของกลุ่มอินเนอร์กรุปและกลุ่มอินเทอร์เนชันแต่ละกลุ่มจะซ้อนกันในกลุ่มนอก (เช่นทั้งหมดในกลุ่มที่อยู่ในกลุ่มเดียวกัน) . น่าเสียดายที่ Innergroup มีหลายระดับ (หลายพันคน) และแต่ละระดับมีการสังเกตการณ์ค่อนข้างน้อยดังนั้นฉันคิดว่ารูปแบบนี้อาจเหมาะสม คำถามของฉันคือ ฉันจะเขียนสูตรหลายระดับได้อย่างไร เมื่อlmer เข้ากับโมเดลแล้วจะมีวิธีการทำนายอย่างไร ฉันมีตัวอย่างของเล่นที่เรียบง่ายขึ้น แต่ไม่พบฟังก์ชันทำนาย () คนส่วนใหญ่ดูเหมือนจะสนใจในการอนุมานมากกว่าการทำนายด้วยเทคนิคแบบนี้ ฉันมีหลายล้านแถวดังนั้นการคำนวณอาจเป็นปัญหา แต่ฉันสามารถลดได้ตามความเหมาะสม ฉันไม่ต้องการทำสิ่งที่สองในบางครั้ง แต่ฉันก็อาจเริ่มคิดเกี่ยวกับมันและเล่นกับมัน ผมมีข้อมูลที่คล้ายกันเหมือน แต่ก่อน แต่ไม่มี x, y และในขณะนี้คือตัวแปรทวินามของแบบฟอร์มNK) y ยังมีการทับซ้อนจำนวนมากแม้ในกลุ่มผู้ใช้ ส่วนใหญ่ของไม่เกิน 2 หรือ 3 (หรือน้อยกว่า) …

2
REML หรือ ML เพื่อเปรียบเทียบโมเดลเอฟเฟกต์ผสมสองแบบที่มีเอฟเฟกต์คงที่แตกต่างกัน แต่มีเอฟเฟกต์แบบสุ่มเหมือนกันหรือไม่
พื้นหลัง: หมายเหตุ: ชุดข้อมูลและรหัส r ของฉันรวมอยู่ด้านล่างข้อความ ฉันต้องการใช้ AIC เพื่อเปรียบเทียบแบบจำลองเอฟเฟกต์สองแบบที่สร้างขึ้นโดยใช้แพ็คเกจ lme4 ในอาร์แต่ละรุ่นมีเอฟเฟกต์คงที่หนึ่งแบบและเอฟเฟกต์แบบสุ่มหนึ่งแบบ เอฟเฟกต์คงที่นั้นแตกต่างกันระหว่างรุ่น แต่เอฟเฟกต์แบบสุ่มยังคงเหมือนเดิมระหว่างรุ่น ฉันพบว่าถ้าฉันใช้ REML = T, model2 มีคะแนน AIC ที่ต่ำกว่า, แต่ถ้าฉันใช้ REML = F, model1 มีคะแนน AIC ที่ต่ำกว่า รองรับการใช้ ML: Zuur และคณะ (2009; PAGE 122) แนะนำว่า "ในการเปรียบเทียบโมเดลที่มีเอฟเฟกต์แบบซ้อน (แต่มีโครงสร้างแบบสุ่มเดียวกัน) ต้องใช้การประเมิน ML ไม่ใช่ REML" สิ่งนี้บ่งบอกว่าฉันควรใช้ ML เนื่องจากเอฟเฟกต์แบบสุ่มของฉันเหมือนกันในทั้งสองรุ่น แต่เอฟเฟกต์คงที่ของฉันแตกต่างกัน [Zuur et al. 2552. …

2
สัดส่วนของความแปรปรวนที่อธิบายในโมเดลผสมผลกระทบ
ฉันไม่ทราบว่ามีการถามก่อนหน้านี้หรือไม่ แต่ฉันไม่พบสิ่งใดเกี่ยวกับเรื่องนี้ คำถามของฉันคือถ้าทุกคนสามารถให้การอ้างอิงที่ดีเพื่อเรียนรู้วิธีการได้สัดส่วนสัดส่วนของความแปรปรวนที่อธิบายโดยแต่ละปัจจัยคงที่และสุ่มในรูปแบบผสมผลกระทบ

3
สิ่งที่จะเป็นภาพตัวอย่างสำหรับโมเดลผสมเชิงเส้น?
สมมติว่าคุณอยู่ในห้องสมุดของแผนกสถิติของคุณและคุณเจอหนังสือที่มีรูปภาพต่อไปนี้ในหน้าแรก คุณอาจจะคิดว่านี่เป็นหนังสือเกี่ยวกับเรื่องการถดถอยเชิงเส้น ภาพที่จะทำให้คุณคิดเกี่ยวกับโมเดลเชิงเส้นผสมเป็นอย่างไร

2
ความเป็นอิสระของสารตกค้างในการทดสอบ / จำลองทางคอมพิวเตอร์?
ฉันทำการประเมินทางคอมพิวเตอร์โดยใช้วิธีการที่แตกต่างกันของการปรับแบบจำลองที่ใช้ในวิทยาศาสตร์ Palaeo ฉันมีชุดฝึกอบรมแบบ ish ขนาดใหญ่ดังนั้นฉันจึงสุ่ม (ชุดชั้นในแบบสุ่มแบ่งชั้น) แล้ววางชุดทดสอบ ผมติดตั้งวิธีการแตกต่างกันไปตัวอย่างการฝึกอบรมชุดและการใช้ม.ส่งผลให้รูปแบบที่ผมคาดการตอบสนองสำหรับตัวอย่างการทดสอบชุดและคำนวณ RMSEP มากกว่ากลุ่มตัวอย่างที่อยู่ในชุดทดสอบ นี้เป็นหนึ่งในการทำงานม.ม.mม.ม.m ฉันทำกระบวนการนี้ซ้ำหลายครั้งทุกครั้งที่ฉันเลือกชุดฝึกอบรมที่แตกต่างกันโดยการสุ่มตัวอย่างชุดทดสอบใหม่ หลังจากทำสิ่งนี้แล้วฉันต้องการตรวจสอบว่าวิธีใดวิธีมีประสิทธิภาพ RMSEP ที่ดีขึ้นหรือแย่ลง ฉันต้องการเปรียบเทียบวิธีการจับคู่แบบฉลาด ๆม.ม.m วิธีการของฉันได้รับเพื่อให้พอดีกับผลกระทบที่ผสม (LME) รูปแบบเชิงเส้นที่มีผลกระทบสุ่มเดียวสำหรับการเรียกใช้ ฉันใช้lmer()จากแพ็คเกจlme4เพื่อให้พอดีกับรุ่นและฟังก์ชั่นของฉันจากแพ็คเกจmultcompเพื่อทำการเปรียบเทียบหลายอย่าง แบบจำลองของฉันเป็นหลัก lmer(RMSEP ~ method + (1 | Run), data = FOO) ที่methodบ่งชี้วิธีการที่ถูกนำมาใช้ในการสร้างแบบจำลองพยากรณ์สำหรับชุดทดสอบและRunเป็นตัวบ่งชี้สำหรับแต่ละโดยเฉพาะอย่างยิ่งการเรียกของ "ทดลอง" ของฉัน คำถามของฉันเกี่ยวกับส่วนที่เหลือของ LME ให้ผลแบบสุ่มเดียวสำหรับRunฉันสมมติว่าค่า RMSEP สำหรับการทำงานนั้นมีความสัมพันธ์กับระดับหนึ่ง แต่ไม่เกี่ยวข้องระหว่างการวิ่งบนพื้นฐานของความสัมพันธ์ที่ชักนำให้เกิดผลแบบสุ่ม ข้อสันนิษฐานเกี่ยวกับความเป็นอิสระระหว่างการรันนี้มีผลหรือไม่? หากไม่มีวิธีที่จะอธิบายสิ่งนี้ในโมเดล LME หรือฉันควรมองหาการวิเคราะห์ทางสถิติประเภทอื่นเพื่อตอบคำถามของฉัน?

3
แบบจำลองผลกระทบผสมทวินามลบที่ไม่พองศูนย์ใน R
มีแพ็คเกจดังกล่าวที่ให้การประมาณค่าแบบจำลองผลกระทบผสมทวินามลบศูนย์ใน R หรือไม่? โดยที่ฉันหมายถึง: Zero-inflation ที่คุณสามารถระบุรูปแบบทวินามสำหรับศูนย์เงินเฟ้อเช่นในฟังก์ชัน zeroinfl ในแพ็คเกจ pscl: zeroinfl (y ~ X | Z, dist = "negbin") โดยที่ Z คือสูตรสำหรับตัวแบบเงินเฟ้อศูนย์ การแจกแจงทวินามลบสำหรับส่วนการนับของโมเดล เอฟเฟกต์สุ่มที่ระบุคล้ายกับฟังก์ชัน lmer ของแพ็คเกจ lme4 ฉันเข้าใจว่า glmmADMB สามารถทำสิ่งนั้นได้ทั้งหมดยกเว้นสูตรสำหรับอัตราเงินเฟ้อที่เป็นศูนย์ไม่สามารถระบุได้ (เป็นเพียงการสกัดกั้นนั่นคือ Z คือเพียง 1) แต่มีแพ็คเกจอื่นที่สามารถทำได้ทั้งหมดหรือไม่ ฉันจะขอบคุณมากสำหรับความช่วยเหลือของคุณ!

1
ANOVA ผสมเอฟเฟกต์แบบไม่สมดุลสำหรับการวัดซ้ำ
ฉันมีข้อมูลจากผู้ป่วยที่รักษาด้วยวิธีการรักษา 2 แบบในระหว่างการผ่าตัด ฉันต้องวิเคราะห์ผลของมันต่ออัตราการเต้นของหัวใจ การวัดอัตราการเต้นของหัวใจจะดำเนินการทุก 15 นาที เนื่องจากความยาวของการผ่าตัดอาจแตกต่างกันสำหรับผู้ป่วยแต่ละรายผู้ป่วยแต่ละรายสามารถวัดอัตราการเต้นของหัวใจได้ระหว่าง 7 และ 10 ดังนั้นควรใช้การออกแบบที่ไม่สมดุล ฉันทำการวิเคราะห์โดยใช้ R และใช้แพ็คเกจ ez เพื่อวัด ANOVA เอฟเฟกต์แบบผสมซ้ำหลายครั้ง แต่ฉันไม่ทราบวิธีการวิเคราะห์ข้อมูลที่ไม่สมดุล ใครช่วยได้บ้าง ข้อเสนอแนะเกี่ยวกับวิธีการวิเคราะห์ข้อมูลที่ได้รับการต้อนรับ อัปเดต: ตามที่แนะนำฉันทำการติดตั้งข้อมูลโดยใช้lmerฟังก์ชั่นและพบว่ารุ่นที่ดีที่สุดคือ: heart.rate~ time + treatment + (1|id) + (0+time|id) + (0+treatment|time) ด้วยผลลัพธ์ต่อไปนี้: Random effects: Groups Name Variance Std.Dev. Corr id time 0.00037139 0.019271 id (Intercept) 9.77814104 3.127002 …

1
ต้นกำเนิดของสัญกรณ์สไตล์วิลกินสันเช่น (1 | id) สำหรับเอฟเฟกต์แบบสุ่มในสูตรโมเดลผสมใน R
สูตรโมเดลใน R เช่น y ~ x + a*b + c:d จะขึ้นอยู่กับที่เรียกว่าสัญกรณ์วิลกินสัน : วิลกินสันและโรเจอร์ส 1973 สัญลักษณ์คำอธิบายของปัจจัยรุ่นสำหรับการวิเคราะห์ความแปรปรวน บทความนี้ไม่ได้กล่าวถึงสัญลักษณ์สำหรับรุ่นผสม (ซึ่งอาจไม่มีอยู่ในตอนนั้น) ดังนั้นสูตรผสมโมเดลที่ใช้ในlme4และแพ็คเกจที่เกี่ยวข้องใน R เช่น y ~ x + a*b + c:d + (1|school) + (a*b||town) มาจาก? ใครแนะนำพวกเขาเป็นครั้งแรกและเมื่อไหร่ มีข้อตกลงใด ๆ เช่นคำว่า "สัญกรณ์วิลกินสัน" สำหรับพวกเขาหรือไม่? ฉันหมายถึงเฉพาะเงื่อนไขเช่น (model formula | grouping variable) (model formula || grouping variable)

1
ทำความเข้าใจกับความแปรปรวนของเอฟเฟกต์แบบสุ่มในโมเดล lmer ()
ฉันมีปัญหาในการเข้าใจผลลัพธ์ของlmer()แบบจำลองของฉัน มันเป็นรูปแบบที่เรียบง่ายของตัวแปรผลลัพธ์ (สนับสนุน) ที่มีการสกัดกั้นรัฐที่แตกต่างกัน / ผลกระทบแบบสุ่มรัฐ: mlm1 <- lmer(Support ~ (1 | State)) ผลลัพธ์ของsummary(mlm1)คือ: Linear mixed model fit by REML Formula: Support ~ (1 | State) AIC BIC logLik deviance REMLdev 12088 12107 -6041 12076 12082 Random effects: Groups Name Variance Std.Dev. State (Intercept) 0.0063695 0.079809 Residual 1.1114756 1.054265 Number …

1
เทคนิคการบูตสแตรปที่เหมาะสมสำหรับข้อมูลคลัสเตอร์หรือไม่
ฉันมีคำถามเกี่ยวกับเทคนิคการบูตสแตรปที่เหมาะสมเพื่อใช้กับข้อมูลที่มีการจัดกลุ่มที่แข็งแกร่ง ฉันได้รับมอบหมายให้ประเมินรูปแบบการทำนายผลผสมแบบหลายตัวแปรบนข้อมูลการเรียกร้องค่าสินไหมทดแทนโดยการให้คะแนนแบบจำลองพื้นฐานปัจจุบันในข้อมูลการอ้างสิทธิ์ล่าสุดเพื่อพิจารณาว่าแบบจำลองทำนายว่าตอนใดของการดูแลที่มีความถี่สูงสุดของเซสชัน เปอร์เซ็นต์ไทล์ที่ 95) ความไวความจำเพาะและค่าการทำนายเชิงบวก (PPV) จะถูกนำมาใช้เพื่อประเมินประสิทธิภาพของแบบจำลอง Bootstrapping ดูเหมือนจะเป็นวิธีที่ถูกต้องในการสร้างช่วงความมั่นใจสำหรับความอ่อนไหวความเฉพาะเจาะจงและเปอร์เซ็นต์ PPV โชคไม่ดีที่ bootstrap ที่ไร้เดียงสานั้นไม่เหมาะสมเนื่องจากข้อมูลการเรียกร้องคือ 1) มีความสัมพันธ์กับผู้ให้บริการดูแล 2) จัดแบ่งเป็นตอนของการดูแลด้วยการเข้าชมบ่อยครั้งมากขึ้นในช่วงหลายเดือนก่อนหน้านี้ในตอนของการดูแล ความแตกต่างของเทคนิค bootstrap แบบเคลื่อนย้ายบล็อกจะเหมาะสมหรือไม่ หรืออาจเป็นขั้นตอน bootstrap สามขั้นตอนจะทำงาน: 1) ตัวอย่างที่มีการเปลี่ยนจากผู้ให้บริการที่แตกต่างในข้อมูลแล้ว 2) ตัวอย่างที่มีการเปลี่ยนจากตอนที่แตกต่างกันของการดูแลโดยผู้ให้บริการที่เลือกแล้ว 3) ตัวอย่างที่มีการทดแทน ตอนที่เลือก ขอบคุณมากสำหรับคำแนะนำใด ๆ !

1
รูปแบบผสมกับการรวมข้อผิดพลาดมาตรฐานสำหรับการศึกษาหลายเว็บไซต์ - ทำไมรูปแบบผสมจึงมีประสิทธิภาพมากกว่ามาก
ฉันมีชุดข้อมูลที่ประกอบด้วยชุดของกรณี "รายเดือนที่หัก" นับจากเว็บไซต์จำนวนหนึ่ง ฉันกำลังพยายามหาค่าประมาณสรุปเดียวจากสองเทคนิคที่ต่างกัน: เทคนิคที่ 1: ติดตั้ง "แท่งหัก" กับ Poisson GLM พร้อมตัวแปรตัวบ่งชี้ 0/1 และใช้ตัวแปรเวลาและเวลา ^ 2 เพื่อควบคุมแนวโน้มในเวลา การประมาณค่าตัวแปร 0/1 ของตัวบ่งชี้และ SE นั้นจะรวมกันโดยใช้วิธีโมเมนต์ขึ้นและลงแบบสวย ๆ หรือใช้แพ็คเกจ tlnise ใน R เพื่อรับการประมาณ "Bayesian" สิ่งนี้คล้ายกับที่ Peng และ Dominici ทำกับข้อมูลมลพิษทางอากาศ แต่มีไซต์น้อยกว่า (~ โหล) เทคนิคที่ 2: ละทิ้งการควบคุมเฉพาะไซต์สำหรับแนวโน้มในเวลาและใช้โมเดลเชิงเส้นผสม โดยเฉพาะอย่างยิ่ง: lmer(cases ~ indicator + (1+month+I(month^2) + offset(log(p)), family="poisson", data=data) …

โดยการใช้ไซต์ของเรา หมายความว่าคุณได้อ่านและทำความเข้าใจนโยบายคุกกี้และนโยบายความเป็นส่วนตัวของเราแล้ว
Licensed under cc by-sa 3.0 with attribution required.