พารามิเตอร์ด้านหลังของ Wishart-Wishart คืออะไร?
เมื่อ infering ความแม่นยำเมทริกซ์ของการกระจายปกติใช้ในการสร้างNเวกเตอร์ D-มิติx 1 , . , x N x iΛΛ\boldsymbol{\Lambda}ยังไม่มีข้อความNNx1, . . , xยังไม่มีข้อความx1,..,xN\mathbf{x_1},..,\mathbf{x_N} เรามักจะวาง Wishart ไว้ก่อนหน้าΛเนื่องจากการแจกแจง Wishart นั้นเป็นคอนจูเกตก่อนที่จะมีการตกตะกอนของการแจกแจงปกติแบบหลายตัวแปรที่มีค่าเฉลี่ยและตัวแปรที่ไม่รู้จัก: knownxi∼N(μ,Λ−1)xi∼N(μ,Λ−1)\begin{align} \mathbf{x_i} &\sim \mathcal{N}(\boldsymbol{\mu, \Lambda^{-1}}) \\ \end{align}ΛΛ\boldsymbol{\Lambda} ที่υเป็นองศาอิสระและΛ0เมทริกซ์ขนาด ในการเพิ่มความทนทานและความยืดหยุ่นให้กับโมเดลเราได้ใส่ไฮเปอร์ไพรส์ไว้เหนือพารามิเตอร์ของ Wishart ตัวอย่างเช่นGörürและ Rasmussenแนะนำ: Λ 0Λ∼W(υ,Λ0)Λ∼W(υ,Λ0)\begin{align} \mathbf{\Lambda} &\sim \mathcal{W}(\upsilon, \boldsymbol{\Lambda_0}) \\ \end{align}υυ\upsilonΛ0Λ0\boldsymbol{\Lambda_0} โดยที่Gคือ tha Gamma distributionΛ01υ−D+1∼W(D,1DΛx)∼G(1,1D)Λ0∼W(D,1DΛx)1υ−D+1∼G(1,1D)\begin{align} \mathbf{\Lambda_0} &\sim \mathcal{W}(D, \frac{1}{D}\boldsymbol{\Lambda_x}) \\ …