1
ตัวเลือกรุ่นดั้งเดิม (?) พร้อม k-fold CV
เมื่อใช้ k-fold CV เพื่อเลือกระหว่างโมเดลการถดถอยฉันมักจะคำนวณข้อผิดพลาด CV แยกต่างหากสำหรับแต่ละรุ่นพร้อมกับข้อผิดพลาดมาตรฐาน SE และฉันเลือกรุ่นที่ง่ายที่สุดภายใน 1 SE ของรุ่นที่มีข้อผิดพลาด CV ต่ำสุด (1 กฎข้อผิดพลาดมาตรฐานดูตัวอย่างได้ที่นี่ ) อย่างไรก็ตามเมื่อเร็ว ๆ นี้ฉันได้รับแจ้งว่าด้วยวิธีนี้ฉันประเมินค่าความแปรปรวนสูงเกินไปและในกรณีเฉพาะในการเลือกระหว่างสองรุ่น A และ B ฉันควรดำเนินการต่อไปในลักษณะที่แตกต่างกัน: สำหรับแต่ละเท่าของความยาวให้คำนวณความแตกต่างจุดระหว่างทั้งสองแบบจำลองการทำนายจากนั้นคำนวณความแตกต่างของค่าเฉลี่ยกำลังสองสำหรับการพับKKKยังไม่มีข้อความKNKN_KMSDK=Σยังไม่มีข้อความKi = 1(Y^ฉัน-Y^B i)2ยังไม่มีข้อความK---------------√MSDK=∑i=1NK(y^Ai−y^Bi)2NKMSD_K=\sqrt{\frac{\sum_{i=1}^{N_K}\left(\hat{y}_{Ai}-\hat{y}_{Bi}\right)^2}{N_K}} ค่าเฉลี่ยข้ามเท่าปกติและใช้ข้อผิดพลาดความแตกต่าง CV นี้ (พร้อมกับข้อผิดพลาดมาตรฐาน) เป็นตัวประมาณสำหรับข้อผิดพลาดทั่วไปMSDKMSDKMSD_K คำถาม: สิ่งนี้สมเหตุสมผลสำหรับคุณหรือไม่ ฉันรู้ว่ามีเหตุผลทางทฤษฎีที่อยู่เบื้องหลังการใช้ข้อผิดพลาด CV เป็นตัวประมาณข้อผิดพลาดในการวางนัยทั่วไป (ฉันไม่ทราบว่าเหตุผลเหล่านี้คืออะไร แต่ฉันรู้ว่ามีอยู่จริง!) ฉันไม่รู้ว่ามีเหตุผลทางทฤษฎีที่อยู่เบื้องหลังการใช้ข้อผิดพลาด CV "แตกต่าง" นี้หรือไม่ ฉันไม่รู้ว่าสิ่งนี้สามารถนำมาเปรียบเทียบกับแบบจำลองมากกว่าสองรุ่นได้หรือไม่ การคำนวณความแตกต่างของแบบจำลองทุกคู่ดูเหมือนจะมีความเสี่ยง (การเปรียบเทียบหลายทาง): คุณจะทำอย่างไรถ้าคุณมีมากกว่าสองแบบ? แก้ไข: สูตรของฉันผิดทั้งหมดตัวชี้วัดที่ถูกต้องอธิบายไว้ที่นี่และมันซับซ้อนกว่ามาก ฉันมีความสุขที่ฉันถามที่นี่ก่อนที่จะใช้สูตรไม่ได้! …