คำถามติดแท็ก robust

ความทนทานโดยทั่วไปหมายถึงความไม่มั่นคงทางสถิติของการเบี่ยงเบนจากสมมติฐานพื้นฐาน (Huber and Ronchetti, 2009)

14
ทำไมสถิติที่ไม่ทนทาน (และทนทาน) จึงถูกแทนที่ด้วยเทคนิคแบบดั้งเดิม?
เมื่อแก้ปัญหาทางธุรกิจโดยใช้ข้อมูลเป็นเรื่องธรรมดาที่มีสมมติฐานอย่างน้อยหนึ่งข้อที่ว่าสถิติแบบดั้งเดิมไม่ถูกต้อง ส่วนใหญ่ไม่มีใครมารบกวนการตรวจสอบสมมติฐานเหล่านั้นเพื่อให้คุณไม่เคยรู้จริง ตัวอย่างเช่นเมตริกเว็บทั่วไปจำนวนมากจึงเป็น "แบบหางยาว" (สัมพันธ์กับการแจกแจงแบบปกติ) คือตอนนี้มีการบันทึกไว้เป็นอย่างดีเพื่อให้เราได้รับอนุญาต อีกตัวอย่างหนึ่งชุมชนออนไลน์ - แม้ในชุมชนที่มีสมาชิกนับพันก็มีเอกสารครบถ้วนว่าส่วนแบ่งที่ใหญ่ที่สุดของการมีส่วนร่วมในการมีส่วนร่วมในชุมชนเหล่านี้ส่วนใหญ่เป็นของกลุ่มผู้มีอิทธิพลน้อย (เช่นไม่กี่เดือนที่ผ่านมาหลังจากที่ SO API ให้บริการในรุ่นเบต้าสมาชิกStackOverflowเผยแพร่การวิเคราะห์สั้น ๆ จากข้อมูลที่เขาเก็บรวบรวมผ่านทาง API ข้อสรุปของเขา - น้อยกว่าร้อยละหนึ่งของบัญชีสมาชิก SO ส่วนใหญ่ กิจกรรมบน SO (สมมุติว่าถามคำถามและตอบคำถาม) อีก 1-2% คิดเป็นสัดส่วนที่เหลือและสมาชิกส่วนใหญ่ที่ไม่ทำอะไรเลย) การแจกแจงของการเรียงลำดับนั้น - บ่อยครั้งมากกว่ากฎแทนที่จะเป็นข้อยกเว้น - มักถูกสร้างแบบจำลองที่ดีที่สุดด้วยฟังก์ชันความหนาแน่นของกฎกำลังไฟฟ้า สำหรับการแจกแจงแบบนี้แม้แต่ทฤษฎีบทขีด จำกัด กลางก็เป็นปัญหาที่จะนำมาใช้ ดังนั้นเมื่อมีประชากรจำนวนมากเช่นนี้เป็นที่สนใจของนักวิเคราะห์และเนื่องจากรูปแบบคลาสสิกนั้นมีประสิทธิภาพในการแสดงข้อมูลเหล่านี้ได้ไม่ดีนักและเนื่องจากวิธีการที่แข็งแกร่งและทนทานได้เกิดขึ้นมาระยะหนึ่งแล้ว (อย่างน้อย 20 ปี) พวกเขาไม่ได้ใช้บ่อยขึ้นหรือไม่ (ฉันยังสงสัยว่าทำไมฉันไม่ใช้บ่อยขึ้น แต่นั่นไม่ใช่คำถามสำหรับCrossValidated ) ใช่ฉันรู้ว่ามีบทตำราที่อุทิศให้กับสถิติที่มีประสิทธิภาพและฉันรู้ว่ามี (ไม่กี่) R แพ็คเกจ ( robustbaseเป็นสิ่งที่ฉันคุ้นเคยและใช้) เป็นต้น …

3
ทำไมเราถึงสนใจข้อผิดพลาดการกระจายแบบปกติ (และ homoskedasticity) มากในการถดถอยเชิงเส้นเมื่อเราไม่ต้องทำ
ฉันคิดว่าฉันหงุดหงิดทุกครั้งที่ได้ยินคนพูดว่าการไม่ปฏิบัติตามกฎเกณฑ์ของผู้ตกค้างและ / หรือ heteroskedasticity ละเมิดสมมติฐานของ OLS ในการประมาณค่าพารามิเตอร์ในแบบจำลอง OLS ไม่จำเป็นต้องใช้สมมติฐานเหล่านี้ในทฤษฎีบท Gauss-Markov ฉันเห็นว่าสิ่งนี้สำคัญในการทดสอบสมมติฐานสำหรับแบบจำลอง OLS เนื่องจากการสมมติว่าสิ่งเหล่านี้ทำให้เรามีสูตรที่เป็นระเบียบสำหรับการทดสอบ t-test การทดสอบ F และสถิติทั่วไปของ Wald แต่มันก็ไม่ยากเกินไปที่จะทำการทดสอบสมมติฐานโดยที่ไม่มีพวกเขา หากเราลดลงเพียง homoskedasticity เราสามารถคำนวณข้อผิดพลาดมาตรฐานที่แข็งแกร่งและข้อผิดพลาดมาตรฐานคลัสเตอร์ได้อย่างง่ายดาย หากเราทิ้งกฎเกณฑ์โดยสิ้นเชิงเราสามารถใช้การบูตสแตรปปิ้งและกำหนดพารามิเตอร์แบบอื่นสำหรับข้อผิดพลาดอัตราส่วนความน่าจะเป็นและการทดสอบตัวคูณแบบลากรองจ์ มันเป็นเพียงความอัปยศที่เราสอนด้วยวิธีนี้เพราะฉันเห็นคนจำนวนมากที่ต้องดิ้นรนกับข้อสันนิษฐานที่พวกเขาไม่ต้องพบเจอในตอนแรก ทำไมเราถึงเน้นสมมติฐานเหล่านี้อย่างมากเมื่อเรามีความสามารถในการใช้เทคนิคที่แข็งแกร่งกว่าได้อย่างง่ายดาย? ฉันขาดสิ่งสำคัญไปหรือเปล่า

4
การถดถอยเชิงเส้นอย่างรวดเร็วแข็งแกร่งต่อค่าผิดปกติ
ฉันกำลังจัดการกับข้อมูลเชิงเส้นที่มีค่าผิดปกติซึ่งบางส่วนอยู่ที่ 5 ส่วนเบี่ยงเบนมาตรฐานห่างจากเส้นการถดถอยโดยประมาณ ฉันกำลังมองหาเทคนิคการถดถอยเชิงเส้นที่ลดอิทธิพลของจุดเหล่านี้ จนถึงตอนนี้สิ่งที่ฉันทำคือการประมาณค่าเส้นถดถอยกับข้อมูลทั้งหมดแล้วทิ้งจุดข้อมูลที่มีค่ากำลังสองเหลือมาก (พูดยอด 10%) และทำซ้ำการถดถอยซ้ำโดยไม่มีจุดเหล่านั้น ในวรรณคดีมีวิธีการที่เป็นไปได้มากมาย: สี่เหลี่ยมจัตุรัสที่ถูกตัดทอนน้อยที่สุดการถดถอยแบบควอไทล์เอ็ม - ตัวประมาณ ฯลฯ ฉันไม่รู้จริง ๆ ว่าวิธีใดที่ฉันควรลองดังนั้นฉันกำลังมองหาคำแนะนำ สิ่งสำคัญสำหรับฉันคือวิธีการที่เลือกควรเร็วเนื่องจากการคำนวณที่ถดถอยจะถูกคำนวณในแต่ละขั้นตอนของการปรับให้เหมาะสม ขอบคุณมาก!

4
การจำลองตัวเลือก“ แข็งแกร่ง” ของ Stata ใน R
ฉันพยายามทำซ้ำผลลัพธ์ของตัวเลือก Stata robustใน R ฉันได้ใช้rlmคำสั่งในรูปแบบแพ็คเกจ MASS และคำสั่งlmrobจากแพคเกจ "robustbase" ในทั้งสองกรณีผลลัพธ์จะค่อนข้างแตกต่างจากตัวเลือก "ที่มีประสิทธิภาพ" ใน Stata ใครช่วยกรุณาแนะนำบางสิ่งในบริบทนี้ได้บ้าง นี่คือผลลัพธ์ที่ฉันได้รับเมื่อฉันรันตัวเลือกที่แข็งแกร่งใน Stata: . reg yb7 buildsqb7 no_bed no_bath rain_harv swim_pl pr_terrace, robust Linear regression Number of obs = 4451 F( 6, 4444) = 101.12 Prob > F = 0.0000 R-squared = 0.3682 Root MSE = .5721 ------------------------------------------------------------------------------ …

6
แบบจำลอง Bayesian ที่แข็งแกร่งสำหรับการประมาณขนาดของการแจกแจงแบบปกติเป็นอย่างไร
มีจำนวนของที่มีอยู่ประมาณที่แข็งแกร่งของขนาด เป็นตัวอย่างที่น่าสังเกตคือการเบี่ยงเบนสัมบูรณ์เฉลี่ยที่เกี่ยวข้องกับค่าเบี่ยงเบนมาตรฐานเป็นσ=MAD⋅1.4826σ=MAD⋅1.4826\sigma = \mathrm{MAD}\cdot1.4826 1.4826 ในกรอบการทำงานแบบเบย์มีหลายวิธีที่จะประเมินตำแหน่งของการกระจายตัวแบบปกติอย่างคร่าวๆ (เช่นการปนเปื้อนที่ผิดปกติโดยค่าผิดปกติ) ตัวอย่างเช่นใคร ๆ สามารถสันนิษฐานได้ว่าข้อมูลนั้นถูกแจกจ่าย ณ การแจกแจงหรือการแจก Laplace ตอนนี้คำถามของฉัน: แบบจำลองแบบเบย์สำหรับการวัดขนาดของการแจกแจงแบบปกติอย่างคร่าวๆในลักษณะที่แข็งแกร่งจะแข็งแกร่งในแง่เดียวกับ MAD หรือตัวประมาณที่คล้ายกัน เช่นเดียวกับกรณีของ MAD มันจะเป็นระเบียบถ้าโมเดล Bayesian สามารถเข้าใกล้ SD ของการแจกแจงแบบปกติในกรณีที่การกระจายของข้อมูลกระจายตามปกติ แก้ไข 1: ตัวอย่างทั่วไปของแบบจำลองที่มีความทนทานต่อการปนเปื้อน / ค่าผิดปกติเมื่อสมมติว่าข้อมูลyiYผมy_iเป็นเรื่องปกติประมาณใช้ในการแจกแจงเช่น: yi∼t(m,s,ν)Yผม~เสื้อ(ม.,s,ν)y_i \sim \mathrm{t}(m, s,\nu) โดยที่mม.mคือค่าเฉลี่ยsssคือขนาดและνν\nuคือระดับความอิสระ สำหรับนักบวชที่เหมาะสมบนm,sม.,sm, sและνν\nu , mม.mจะเป็นการประมาณค่าเฉลี่ยของyiYผมy_iที่จะทนทานต่อค่าผิดปกติ อย่างไรก็ตามsssจะไม่เป็นประมาณการที่สอดคล้องกันของ SD ของyiyiy_iเป็นsssขึ้นอยู่กับννν\nuตัวอย่างเช่นถ้าνν\nuจะได้รับการแก้ไขเป็น 4.0 และโมเดลด้านบนจะถูกติดตั้งกับตัวอย่างจำนวนมากจากการแจกแจงจากนั้น sจะอยู่ที่ประมาณ 0.82 สิ่งที่ฉันกำลังมองหาคือโมเดลที่แข็งแกร่งเช่นโมเดล t แต่สำหรับ SD แทนที่จะเป็น …

8
แทนที่ค่าผิดปกติด้วยค่าเฉลี่ย
คำถามนี้ถามโดยเพื่อนของฉันที่ไม่เข้าใจอินเทอร์เน็ต ฉันไม่มีภูมิหลังด้านสถิติและฉันได้ทำการค้นหาข้อมูลในอินเทอร์เน็ตจากคำถามนี้ คำถามคือเป็นไปได้ไหมที่จะแทนที่ค่าผิดปกติด้วยค่าเฉลี่ย? ถ้าเป็นไปได้มีหนังสืออ้างอิง / วารสารเพื่อสำรองข้อความนี้หรือไม่?

2
ช่วงความเชื่อมั่น 50% มีการประเมินอย่างมีประสิทธิภาพมากกว่าช่วงความเชื่อมั่น 95% หรือไม่
คำถามของฉันไหลออกมาจากความคิดเห็นนี้ในบล็อกโพสต์ของ Andrew Gelman ซึ่งเขาสนับสนุนให้ใช้ช่วงความเชื่อมั่น 50% แทนที่จะเป็นช่วงความมั่นใจ 95% แม้ว่าจะไม่ใช่ในกรณีที่พวกเขามีการประเมินที่แข็งแกร่งกว่า: ฉันชอบช่วงเวลา 50% ถึง 95% ด้วยเหตุผล 3 ประการ: ความมั่นคงในการคำนวณ การประเมินที่ใช้งานง่ายขึ้น (ช่วงเวลาครึ่งหนึ่ง 50% ควรมีค่าจริง) ความรู้สึกที่ว่าในการประยุกต์ใช้มันจะเป็นการดีที่สุดที่จะได้ความรู้สึกว่าพารามิเตอร์และค่าที่คาดการณ์นั้นจะอยู่ที่ใด ความคิดเห็นของผู้วิจารณ์ดูเหมือนว่าปัญหาของสมมติฐานที่สร้างช่วงความเชื่อมั่นจะมีผลกระทบมากกว่าถ้าเป็น 95% CI มากกว่าถ้าเป็น 50% CI อย่างไรก็ตามเขาไม่ได้อธิบายว่าทำไม [... ] เมื่อคุณเข้าสู่ช่วงเวลาที่กว้างขึ้นคุณจะไวต่อรายละเอียดหรือสมมติฐานของโมเดลของคุณมากขึ้น ตัวอย่างเช่นคุณจะไม่เชื่อว่าคุณได้ระบุช่วงเวลา 99.9995% อย่างถูกต้อง หรืออย่างน้อยนั่นคือสัญชาตญาณของฉัน ถ้ามันถูกต้องก็ให้เหตุผลว่า 50 เปอร์เซ็นต์ควรจะดีกว่าประมาณ 95% หรืออาจประมาณว่า "แข็งแกร่งขึ้น" เนื่องจากมีความไวต่อข้อสันนิษฐานเกี่ยวกับเสียงน้อยกว่า จริงหรือเปล่า? ทำไม / ทำไมไม่

2
ทำไมเราควรใช้ข้อผิดพลาด t แทนข้อผิดพลาดปกติ?
ในบล็อกโพสต์นี้โดย Andrew Gelman มีข้อความต่อไปนี้: แบบจำลองของ Bayesian เมื่อ 50 ปีที่แล้วดูเรียบง่ายอย่างสิ้นหวัง (ยกเว้นแน่นอนสำหรับปัญหาง่าย ๆ ) และฉันคาดหวังว่าแบบจำลองของ Bayesian ในวันนี้จะดูเรียบง่ายอย่างสิ้นหวัง 50 ปี (สำหรับตัวอย่างง่ายๆ: เราควรใช้ t แทนข้อผิดพลาดทั่วไปทุกที่ทุกเวลา แต่เรายังไม่ทำเช่นนี้เพราะความคุ้นเคยนิสัยและความสะดวกสบายทางคณิตศาสตร์สิ่งเหล่านี้อาจเป็นเหตุผลที่ดี ในการเมืองอนุรักษ์นิยมมีข้อโต้แย้งที่ดีหลายประการ - แต่ฉันคิดว่าท้ายที่สุดเมื่อเราคุ้นเคยกับแบบจำลองที่ซับซ้อนกว่านี้เราจะไปในทิศทางนั้น) ทำไมเราควร "ใช้ t เป็นประจำแทนที่จะเป็นข้อผิดพลาดทั่วไปทุกที่"

2
ข้อผิดพลาด“ ระบบเป็นเอกพจน์คำนวณ” เมื่อเรียกใช้ glm
ฉันใช้แพ็คเกจฐานข้อมูลที่แข็งแกร่งเพื่อเรียกใช้การประมาณค่า GLM อย่างไรก็ตามเมื่อฉันทำฉันได้รับข้อผิดพลาดต่อไปนี้: Error in solve.default(crossprod(X, DiagB * X)/nobs, EEq) : system is computationally singular: reciprocal condition number = 1.66807e-16 สิ่งนี้หมายความว่า / บ่งชี้? และฉันจะแก้ปัญหาได้อย่างไร PS หากคุณต้องการอะไร (สูตร / ข้อมูลจำเพาะหรือข้อมูล) ที่จะตอบฉันยินดีที่จะให้มัน

4
เหตุใด RANSAC จึงไม่ใช้กันอย่างแพร่หลายในสถิติ
มาจากมุมมองของคอมพิวเตอร์ฉันมักจะใช้วิธีRANSAC (Random Sample Consensus) สำหรับการปรับโมเดลให้เหมาะสมกับข้อมูลที่มีค่าผิดปกติจำนวนมาก อย่างไรก็ตามฉันไม่เคยเห็นมันใช้โดยนักสถิติและฉันมักจะอยู่ภายใต้ความประทับใจว่ามันไม่ได้ถือว่าเป็นวิธี "สถิติเสียง" เหตุผลที่เป็นเช่นนั้น? มันเป็นการสุ่มในธรรมชาติซึ่งทำให้ยากต่อการวิเคราะห์ แต่เป็นวิธีการบูตสแตรป หรือเป็นเพียงกรณีของนักวิชาการที่ไม่ได้พูดคุยกัน

5
ตัวอย่างอิสระ t-test มีความแข็งแกร่งเพียงใดเมื่อการแจกแจงตัวอย่างไม่ปกติ?
ฉันได้อ่านแล้วว่าการทดสอบเสื้อยืดนั้น "แข็งแกร่งพอสมควร" เมื่อการแจกแจงของตัวอย่างนั้นออกจากภาวะปกติ แน่นอนว่ามันคือการกระจายตัวตัวอย่างของความแตกต่างที่สำคัญ ฉันมีข้อมูลสำหรับสองกลุ่ม กลุ่มใดกลุ่มหนึ่งมีความเบ้สูงของตัวแปรตาม ขนาดตัวอย่างค่อนข้างเล็กสำหรับทั้งสองกลุ่ม (n = 33 ในหนึ่งและ 45 ในอีกกลุ่ม) ฉันควรสมมติว่าภายใต้เงื่อนไขเหล่านี้การทดสอบเสื้อยืดของฉันจะทนทานต่อการละเมิดข้อสันนิษฐานทั่วไปหรือไม่

4
วิธีการฉายเวกเตอร์ใหม่บนพื้นที่ PCA?
หลังจากทำการวิเคราะห์องค์ประกอบหลัก (PCA) ฉันต้องการฉายเวกเตอร์ใหม่ลงบนพื้นที่ PCA (เช่นค้นหาพิกัดในระบบพิกัด PCA) ผมได้คำนวณ PCA ในภาษา R prcompโดยใช้ ตอนนี้ฉันควรคูณเวกเตอร์ของฉันด้วยเมทริกซ์การหมุน PCA ควรจัดองค์ประกอบหลักในเมทริกซ์นี้เป็นแถวหรือคอลัมน์?
21 r  pca  r  variance  heteroscedasticity  misspecification  distributions  time-series  data-visualization  modeling  histogram  kolmogorov-smirnov  negative-binomial  likelihood-ratio  econometrics  panel-data  categorical-data  scales  survey  distributions  pdf  histogram  correlation  algorithms  r  gpu  parallel-computing  approximation  mean  median  references  sample-size  normality-assumption  central-limit-theorem  rule-of-thumb  confidence-interval  estimation  mixed-model  psychometrics  random-effects-model  hypothesis-testing  sample-size  dataset  large-data  regression  standard-deviation  variance  approximation  hypothesis-testing  variance  central-limit-theorem  kernel-trick  kernel-smoothing  error  sampling  hypothesis-testing  normality-assumption  philosophical  confidence-interval  modeling  model-selection  experiment-design  hypothesis-testing  statistical-significance  power  asymptotics  information-retrieval  anova  multiple-comparisons  ancova  classification  clustering  factor-analysis  psychometrics  r  sampling  expectation-maximization  markov-process  r  data-visualization  correlation  regression  statistical-significance  degrees-of-freedom  experiment-design  r  regression  curve-fitting  change-point  loess  machine-learning  classification  self-study  monte-carlo  markov-process  references  mathematical-statistics  data-visualization  python  cart  boosting  regression  classification  robust  cart  survey  binomial  psychometrics  likert  psychology  asymptotics  multinomial 

2
เป็นถ่วงน้ำหนัก
ฉันประเมินโมเดลเชิงเส้นที่ทนทานRด้วยน้ำหนัก MM โดยใช้rlm()แพคเกจ MASS `R`` ไม่ได้ให้ค่าสำหรับแบบจำลอง แต่ฉันต้องการให้มีค่าหากเป็นปริมาณที่มีความหมาย ฉันยังสนใจที่จะทราบว่ามีความหมายใด ๆ ในการมีค่าR 2ที่ชั่งน้ำหนักความแปรปรวนทั้งหมดและส่วนที่เหลือในลักษณะเดียวกับที่การสังเกตนั้นมีน้ำหนักในการถดถอยที่แข็งแกร่งหรือไม่ ความคิดทั่วไปของฉันคือถ้าสำหรับวัตถุประสงค์ของการถดถอยเรามีน้ำหนักที่ให้อิทธิพลน้อยกว่าเพราะพวกมันมีค่าผิดปกติในทางใดทางหนึ่งบางทีอาจจะเพื่อการคำนวณr 2เราควรให้ค่าเหล่านั้นด้วย ประมาณการเดียวกันมีอิทธิพลน้อยลงหรือไม่R2R2R^2R2R2R^2r2r2r^2 ฉันเขียนฟังก์ชันง่าย ๆ สองอย่างสำหรับและR 2ถ่วงน้ำหนักพวกมันอยู่ด้านล่าง ฉันยังรวมผลลัพธ์ของการเรียกใช้ฟังก์ชันเหล่านี้สำหรับแบบจำลองของฉันซึ่งเรียกว่า HI9 แก้ไข: ฉันพบหน้าเว็บของ Adelle Coster ของ UNSW ที่ให้สูตรสำหรับการรวมเวกเตอร์ตุ้มน้ำหนักในการคำนวณการคำนวณของทั้งสองและอย่างที่ฉันทำและขอให้เธออ้างอิงอย่างเป็นทางการเพิ่มเติม: http: //web.maths unsw.edu.au/~adelle/Garvan/Assays/GoodnessOfFit.html (ยังคงต้องการความช่วยเหลือจาก Cross Validated เกี่ยวกับวิธีการตีความน้ำหนักr 2นี้)R2R2R^2R2R2R^2R2SSeSStr2r2r^2 #I used this function to calculate a basic r-squared from the robust linear model r2 …

5
วิธีการสหสัมพันธ์ที่แข็งแกร่งแบบใดที่ใช้จริง
ฉันวางแผนที่จะทำการศึกษาแบบจำลองที่ฉันเปรียบเทียบประสิทธิภาพของเทคนิคความสัมพันธ์ที่แข็งแกร่งหลายอย่างกับการแจกแจงที่ต่างกัน (เบ้กับค่าผิดปกติ ฯลฯ ) ด้วยความแข็งแกร่งฉันหมายถึงกรณีในอุดมคติของการมีความแข็งแกร่งต่อก) การแจกแจงแบบเบ้, b) ค่าผิดปกติและ c) ก้อยที่หนัก นอกจากความสัมพันธ์ของเพียร์สันในฐานะที่เป็นพื้นฐานแล้วฉันยังคิดที่จะรวมมาตรการที่แข็งแกร่งกว่านี้ไว้ด้วย: Spearman's ρρ\rho เปอร์เซ็นต์ความสัมพันธ์โค้ง (Wilcox, 1994, [1]) รูปไข่ปริมาณต่ำสุด, ปัจจัยแปรปรวนร่วมขั้นต่ำ ( cov.mve/ cov.mcdพร้อมกับcor=TRUEตัวเลือก) อาจจะเป็นความสัมพันธ์ที่ได้รับรางวัล แน่นอนมีตัวเลือกมากมาย (โดยเฉพาะถ้าคุณรวมเทคนิคการถดถอยที่แข็งแกร่งเช่นกัน) แต่ฉันต้องการ จำกัด ตัวเองกับวิธีที่ใช้ส่วนใหญ่ / เป็นแนวโน้ม ตอนนี้ฉันมีสามคำถาม (อย่าลังเลที่จะตอบคำถามเดียวเท่านั้น): มีวิธีสหสัมพันธ์ที่แข็งแกร่งอื่น ๆ ที่ฉันสามารถ / ควรรวมไว้หรือไม่ เทคนิคการสหสัมพันธ์ที่แข็งแกร่งแบบใดที่ใช้ จริง ในสาขาของคุณ (การพูดเพื่อการวิจัยทางจิตวิทยายกเว้นสเปียร์แมนผมไม่เคยเห็นใด ๆ ที่แข็งแกร่งนอกเทคนิคความสัมพันธ์ของกระดาษเทคนิคร่วมมือจะได้รับความนิยมมากขึ้น แต่สถิติที่แข็งแกร่งอื่น ๆ มีมากหรือน้อยไม่ได้มีอยู่เพื่อให้ห่างไกล.)ρρ\rho มีการเปรียบเทียบเชิงเทคนิคของเทคนิคสหสัมพันธ์ที่คุณรู้จักหรือไม่? นอกจากนี้โปรดแสดงความคิดเห็นรายการวิธีการที่ระบุด้านบน [1] Wilcox, …

4
คุณสมบัติค่าเฉลี่ยและค่ามัธยฐาน
ใครช่วยอธิบายให้ฉันชัดเจนถึงตรรกะทางคณิตศาสตร์ที่จะเชื่อมโยงสองประโยค (a) และ (b) เข้าด้วยกันได้ไหม? ให้เรามีชุดของค่า (การกระจายบางอย่าง) ตอนนี้ a) ค่ามัธยฐานไม่ได้ขึ้นอยู่กับค่าทุกค่า [ขึ้นอยู่กับค่ากลางหนึ่งหรือสองค่า]; b) ค่ามัธยฐานเป็นสถานที่ของผลรวมเบี่ยงเบนน้อยที่สุดจากนั้น และในทำนองเดียวกันและในทางตรงกันข้าม a) (เลขคณิต) ค่าเฉลี่ยขึ้นอยู่กับค่าทุกค่า b) Mean คือทีของการรวมผลบวกกำลังสองส่วนเบี่ยงเบนน้อยที่สุดจากนั้น เข้าใจของฉันมันใช้งานง่ายจนถึงขณะนี้

โดยการใช้ไซต์ของเรา หมายความว่าคุณได้อ่านและทำความเข้าใจนโยบายคุกกี้และนโยบายความเป็นส่วนตัวของเราแล้ว
Licensed under cc by-sa 3.0 with attribution required.