2
การประมาณค่าความแปรปรวนร่วมหลังของเกาวาสหลายตัวแปร
ฉันต้องการ "เรียนรู้" การกระจายตัวของเกาวาสแบบไบวารีที่มีตัวอย่างน้อย แต่เป็นสมมติฐานที่ดีเกี่ยวกับการแจกแจงก่อนหน้าดังนั้นฉันจึงต้องการใช้วิธีแบบเบส์ ฉันกำหนดก่อนหน้านี้: P(μ)∼N(μ0,Σ0)P(μ)∼N(μ0,Σ0) \mathbf{P}(\mathbf{\mu}) \sim \mathcal{N}(\mathbf{\mu_0},\mathbf{\Sigma_0}) μ0=[00] Σ0=[160027]μ0=[00] Σ0=[160027] \mathbf{\mu_0} = \begin{bmatrix} 0 \\ 0 \end{bmatrix} \ \ \ \mathbf{\Sigma_0} = \begin{bmatrix} 16 & 0 \\ 0 & 27 \end{bmatrix} และการแจกแจงของฉันให้สมมติฐาน P(x|μ,Σ)∼N(μ,Σ)P(x|μ,Σ)∼N(μ,Σ) \mathbf{P}(x|\mathbf{\mu},\mathbf{\Sigma}) \sim \mathcal{N}(\mathbf{\mu},\mathbf{\Sigma}) μ=[00] Σ=[180018]μ=[00] Σ=[180018] \mathbf{\mu} = \begin{bmatrix} 0 \\ 0 \end{bmatrix} \ \ …