คำถามติดแท็ก inference

สรุปผลเกี่ยวกับพารามิเตอร์ประชากรจากข้อมูลตัวอย่าง ดู https://en.wikipedia.org/wiki/Inference และ https://en.wikipedia.org/wiki/Statistical_inference

4
วิธีตีความพล็อต QQ
ฉันกำลังทำงานกับชุดข้อมูลขนาดเล็ก (21 ข้อสังเกต) และมีพล็อต QQ ปกติต่อไปนี้ใน R: เมื่อเห็นว่าพล็อตไม่รองรับความเป็นมาตรฐานฉันจะสรุปอะไรเกี่ยวกับการแจกแจงพื้นฐาน สำหรับฉันแล้วดูเหมือนว่าการแจกแจงที่เบ้ไปทางขวาจะเหมาะกว่าดีกว่าใช่มั้ย นอกจากนี้เราสามารถสรุปอะไรอีกจากข้อมูล

12
Bayesians คือใคร?
ในฐานะที่เป็นหนึ่งในความสนใจในสถิติที่แตกต่าง"บ่อย" และ "Bayesian"ในไม่ช้าก็กลายเป็นเรื่องธรรมดา (และผู้ที่ยังไม่ได้อ่านสัญญาณและเสียงของเนทซิลเวอร์ ? ในหลักสูตรการพูดคุยและการแนะนำมุมมองเป็นประจำอย่างท่วมท้น ( MLE , ค่า ) แต่มีแนวโน้มที่จะมีเวลาเพียงเล็กน้อยในการชื่นชมสูตร Bayes และสัมผัสกับแนวคิดของการกระจายก่อนหน้านี้พีpp น้ำเสียงที่ใช้เพื่อหารือเกี่ยวกับสถิติของ Bayesian แกว่งไปมาระหว่างการให้ความเคารพต่อการสนับสนุนแนวคิดและคำใบ้ของความสงสัยเกี่ยวกับช่องว่างระหว่างวัตถุประสงค์อันสูงส่งและความไม่ลงรอยกันในการเลือกการแจกแจงก่อนหน้า ประโยคเช่น "ถ้าคุณเป็น Bayesian ฮาร์ดคอร์ ... " มาก คำถามคือใครคือชาวเบย์ในปัจจุบัน? พวกเขาบางสถาบันการศึกษาที่เลือกที่คุณรู้ว่าถ้าคุณไปที่นั่นคุณจะกลายเป็นเบย์? ถ้าเป็นเช่นนั้นพวกเขาต้องการเป็นพิเศษหรือไม่? เราหมายถึงนักสถิติและนักคณิตศาสตร์ที่ได้รับการเคารพเพียงไม่กี่คนและหากเป็นเช่นนั้น พวกมันมีอยู่จริงหรือเปล่าเช่น "Bayesians" บริสุทธิ์เหล่านี้หรือไม่? พวกเขาจะยอมรับฉลากอย่างมีความสุขหรือไม่? มันเป็นความแตกต่างที่ประจบเสมอ? พวกเขาเป็นนักคณิตศาสตร์ที่มีสไลด์แปลก ๆ ในการประชุมปราศจากค่าใด ๆและช่วงความเชื่อมั่นหรือไม่พีpp มีโพรงจำนวนเท่าใดที่เป็น "Bayesian" เราหมายถึงนักสถิติส่วนน้อยหรือไม่? หรือ Bayesian-ism ปัจจุบันมีแอปพลิเคชันการเรียนรู้ของเครื่อง? ... หรือมากกว่านั้นคือสถิติแบบเบย์ไม่ได้เป็นสาขาวิชาสถิติมากนัก แต่เป็นขบวนการญาณวิทยาที่ครอบคลุมการคำนวณความน่าจะเป็นในปรัชญาของวิทยาศาสตร์? ในเรื่องนี้นักวิทยาศาสตร์ทุกคนจะเป็นแบบเบย์ในใจ ... แต่จะไม่มีสิ่งใดในฐานะนักสถิติแบบเบย์ที่บริสุทธิ์ซึ่งไม่สามารถผ่านไปได้กับเทคนิคที่ใช้บ่อย ๆ …

10
การทำความเข้าใจ“ ความแปรปรวน” อย่างสังหรณ์ใจ
อะไรคือวิธีที่สะอาดและง่ายที่สุดในการอธิบายแนวคิดเรื่องความแปรปรวนของใครบางคน? มันหมายถึงอะไรอย่างสังหรณ์ใจ? ถ้ามีใครอธิบายเรื่องนี้ให้ลูกฟัง มันเป็นแนวคิดที่ฉันมีปัญหาในการสื่อสาร - โดยเฉพาะอย่างยิ่งเมื่อเกี่ยวข้องกับความแปรปรวนกับความเสี่ยง ฉันเข้าใจในเชิงคณิตศาสตร์และสามารถอธิบายได้เช่นกัน แต่เมื่ออธิบายปรากฏการณ์ในโลกแห่งความเป็นจริงคุณจะทำให้คนหนึ่งเข้าใจถึงความแปรปรวนและการบังคับใช้ใน 'โลกแห่งความจริง' ได้อย่างไร สมมติว่าเรากำลังจำลองการลงทุนในหุ้นโดยใช้ตัวเลขสุ่ม (กลิ้งแม่พิมพ์หรือใช้แผ่นงาน Excel ไม่สำคัญ) เราได้รับผลตอบแทนจากการลงทุนโดยเชื่อมโยงแต่ละตัวแปรสุ่มกับ 'การเปลี่ยนแปลงบางอย่าง' ในผลตอบแทน เช่น.: การกลิ้ง 1 หมายถึงการเปลี่ยนแปลง 0.8 ต่อ$ 1 ในการลงทุน 5 การเปลี่ยนแปลง 1.1 ต่อ$ 1 และอื่น ๆ ตอนนี้หากการจำลองนี้ดำเนินการประมาณ 50 ครั้ง (หรือ 20 หรือ 100) เราจะได้รับค่าบางอย่างและมูลค่าสุดท้ายของการลงทุน ดังนั้น 'ความแปรปรวน' จริง ๆ แล้วบอกอะไรเราถ้าเราจะคำนวณจากชุดข้อมูลด้านบน สิ่งใดที่ "เห็น" - หากความแปรปรวนปรากฎเป็น 1.7654 …

8
อะไรคือตัวอย่างที่ดีและน่าเชื่อถือที่ค่า p มีประโยชน์?
คำถามของฉันในชื่อเป็นคำอธิบายตัวเอง แต่ฉันต้องการที่จะให้บริบท ASA ออกแถลงการณ์เมื่อต้นสัปดาห์นี้“ บนค่า p: บริบทกระบวนการและวัตถุประสงค์ ” สรุปความเข้าใจผิดที่หลากหลายของค่า p และเรียกร้องให้ระมัดระวังไม่ใช้โดยไม่มีบริบทและความคิด (ซึ่งอาจกล่าวได้เพียงเกี่ยวกับ วิธีการทางสถิติใด ๆ จริงๆ) ในการตอบสนองต่อ ASA ศาสตราจารย์ Matloff เขียนบล็อกโพสต์หัวข้อ: หลังจาก 150 ปี, เอเอสเอกล่าวว่าไม่มีค่า P- จากนั้นอาจารย์ Benjamini (และฉัน) โพสต์ตอบกลับหัวข้อมันไม่ใช่ความผิด P-ค่า - การสะท้อนความเห็นในงบ เพื่อตอบสนองต่อมันศาสตราจารย์ Matloff ถามในโพสต์ติดตาม : สิ่งที่ฉันต้องการเห็น [... คือ] - เป็นตัวอย่างที่ดีและน่าเชื่อถือซึ่งค่า p มีประโยชน์ นั่นจะต้องเป็นบรรทัดล่าง เพื่ออ้างถึงสองข้อโต้แย้งที่สำคัญของเขากับประโยชน์ของค่า:ppp ด้วยตัวอย่างขนาดใหญ่การทดสอบอย่างมีนัยสำคัญจะกระโจนเข้าหาตัวเล็ก ๆ ซึ่งไม่สำคัญออกไปจากสมมติฐานว่าง เกือบจะไม่มีสมมติฐานว่างใด ๆ …

12
การทดสอบสองด้าน…ฉันไม่มั่นใจ ประเด็นคืออะไร?
ข้อความที่ตัดตอนมาต่อไปนี้มาจากการเข้า, อะไรคือความแตกต่างระหว่างการทดสอบแบบด้านเดียวและแบบสองด้าน? บนเว็บไซต์ช่วยเหลือสถิติของ UCLA ... พิจารณาถึงผลที่จะตามมาจากการขาดหายไปในทิศทางอื่น ลองนึกภาพคุณได้พัฒนายาใหม่ที่คุณเชื่อว่าเป็นการพัฒนายาที่มีอยู่เดิม คุณต้องการเพิ่มความสามารถในการตรวจจับการปรับปรุงให้สูงสุดเพื่อที่คุณจะได้เลือกการทดสอบแบบด้านเดียว ในการทำเช่นนี้คุณไม่สามารถทดสอบความเป็นไปได้ที่ยาใหม่จะมีประสิทธิภาพน้อยกว่ายาที่มีอยู่เดิม หลังจากเรียนรู้พื้นฐานที่แน่นอนของการทดสอบสมมติฐานและไปที่ส่วนเกี่ยวกับการทดสอบแบบเทลด์ vs การทดสอบสองแบบ ... ฉันเข้าใจคณิตศาสตร์พื้นฐานและความสามารถในการตรวจจับที่เพิ่มขึ้นของการทดสอบแบบเทลด์หนึ่งการทดสอบ ฯลฯ ... แต่ฉันไม่สามารถพันรอบศีรษะ รอบ ๆ สิ่งหนึ่ง ... ประเด็นคืออะไร? ฉันล้มเหลวที่จะเข้าใจว่าทำไมคุณควรแยกอัลฟ่าของคุณระหว่างสุดขั้วทั้งสองเมื่อผลลัพธ์ตัวอย่างของคุณสามารถเป็นหนึ่งหรืออย่างอื่นหรือทั้งสองอย่าง ใช้สถานการณ์ตัวอย่างจากข้อความที่ยกมาด้านบน คุณอาจจะ "ล้มเหลวในการทดสอบ" สำหรับผลลัพธ์ในทิศทางตรงกันข้ามได้อย่างไร? คุณมีค่าเฉลี่ยตัวอย่าง คุณมีค่าเฉลี่ยประชากรของคุณ เลขคณิตอย่างง่ายจะบอกให้คุณทราบว่าอะไรสูงกว่า มีการทดสอบอะไรหรือล้มเหลวในการทดสอบในทิศทางตรงกันข้าม สิ่งที่หยุดคุณเพิ่งเริ่มต้นจากศูนย์ด้วยสมมติฐานตรงกันข้ามถ้าคุณเห็นชัดเจนว่าค่าเฉลี่ยตัวอย่างจะไปในทิศทางอื่น? อ้างจากหน้าเดียวกันอีก: การเลือกการทดสอบแบบหนึ่งด้านหลังจากรันการทดสอบแบบสองด้านที่ล้มเหลวในการปฏิเสธสมมติฐานว่างไม่เหมาะสมไม่ว่า "ปิด" ถึงการทดสอบแบบสองด้านนั้นมีนัยสำคัญก็ตาม ฉันคิดว่าสิ่งนี้ยังใช้กับการสลับขั้วของการทดสอบแบบด้านเดียว แต่วิธีนี้ "หมอ" ส่งผลให้ถูกต้องน้อยกว่าถ้าคุณเพียงแค่เลือกการทดสอบหนึ่งด้านที่ถูกต้องในตอนแรก? เห็นได้ชัดว่าฉันพลาดภาพส่วนใหญ่ที่นี่ ทุกอย่างดูเหมือนจะไม่เจาะจงเกินไป ซึ่งก็คือฉันคิดว่าในแง่ที่สิ่งที่หมายถึง "นัยสำคัญทางสถิติ" - 95%, 99%, 99.9% ... โดยพลการเริ่มต้นด้วย

7
ทำไมบางคนจะใช้วิธีการแบบเบย์กับวิธีการที่ 'ไม่เป็นทางการ' ก่อนหน้าแทนที่จะเป็นวิธีแบบดั้งเดิม?
หากความสนใจเป็นเพียงการประมาณค่าพารามิเตอร์ของแบบจำลอง (การประมาณค่าแบบจุดและ / หรือช่วงเวลา) และข้อมูลก่อนหน้านี้ไม่น่าเชื่อถืออ่อนแอ (ฉันรู้ว่านี่เป็นบิตที่คลุมเครือ แต่ฉันพยายามสร้างสถานการณ์ที่เลือก ก่อนหน้านี้เป็นเรื่องยาก) ... ทำไมบางคนเลือกที่จะใช้วิธีการแบบเบย์กับนักบวชที่ไม่เหมาะสมแทนที่จะเป็นแบบดั้งเดิม

3
การทดสอบความเท่าเทียมกันของสัมประสิทธิ์จากการถดถอยสองแบบที่แตกต่างกัน
นี่ดูเหมือนจะเป็นปัญหาพื้นฐาน แต่ฉันเพิ่งรู้ว่าจริง ๆ แล้วฉันไม่รู้วิธีทดสอบความเท่าเทียมของสัมประสิทธิ์จากการถดถอยสองแบบที่แตกต่างกัน มีใครบ้างไหมที่ให้แสงนี้? อีกอย่างเป็นทางการเช่นสมมติว่าฉันวิ่งต่อไปนี้สองถดถอย: และ ที่หมายถึงเมทริกซ์การออกแบบของการถดถอยและเวกเตอร์ของสัมประสิทธิ์ในการถดถอย . โปรดทราบว่าและอาจแตกต่างกันมากที่มีขนาดแตกต่างกัน ฯลฯ ฉันสนใจในตัวอย่างหรือไม่{21}ปี2 = X 2 β 2 + ε 2 X ฉันฉันβ ฉันฉันX 1 X 2 β 11 ≠ β 21Y1= X1β1+ ϵ1y1=X1β1+ϵ1 y_1 = X_1\beta_1 + \epsilon_1 Y2= X2β2+ ϵ2y2=X2β2+ϵ2 y_2 = X_2\beta_2 + \epsilon_2 XผมXiX_iผมiiβผมβi\beta_iผมiiX1X1X_1X2X2X_2β^11≠β^21β^11≠β^21\hat\beta_{11} \neq \hat\beta_{21} หากสิ่งเหล่านี้มาจากการถดถอยแบบเดียวกันนี่จะไม่สำคัญ …

6
กฎของหัวแม่มือสำหรับจำนวนตัวอย่าง bootstrap
ฉันสงสัยว่ามีใครรู้กฎทั่วไปของหัวแม่มือเกี่ยวกับจำนวนตัวอย่าง bootstrap ที่เราควรใช้โดยขึ้นอยู่กับลักษณะของข้อมูล (จำนวนการสังเกต ฯลฯ ) และ / หรือตัวแปรที่รวมอยู่ด้วย?

4
อะไรคือข้อโต้แย้ง fiducial และทำไมมันถึงไม่ได้รับการยอมรับ?
หนึ่งในช่วงปลายมีส่วนร่วมของชาวประมง RA เป็นช่วงเวลาที่แม่นยำและการขัดแย้งจริยธรรมแม่นยำ อย่างไรก็ตามวิธีการนี้ไม่ได้รับความนิยมเท่านักโต้เถียงหรือ Bayesian อะไรคือข้อโต้แย้ง fiducial และทำไมไม่ได้รับการยอมรับ?

3
ทำไมการทดสอบสมมติฐานขั้นพื้นฐานมุ่งเน้นไปที่ค่าเฉลี่ยและไม่ได้อยู่บนค่ามัธยฐาน?
ในหลักสูตรสถิติขั้นพื้นฐานระดับล่างนักเรียนจะได้รับการสอนการทดสอบสมมติฐานสำหรับค่าเฉลี่ยของประชากร เหตุใดจึงให้ความสำคัญกับค่าเฉลี่ยและไม่ใช่ค่ามัธยฐาน? ฉันเดาว่ามันง่ายกว่าที่จะทดสอบค่าเฉลี่ยเนื่องจากทฤษฎีบทขีด จำกัด กลาง แต่ฉันชอบอ่านคำอธิบายที่มีการศึกษา

2
กำลังทำการทดสอบทางสถิติหลังจากแสดงข้อมูลเป็นภาพ - การขุดลอกข้อมูลหรือไม่
ฉันจะเสนอคำถามนี้โดยใช้ตัวอย่าง สมมติว่าฉันมีชุดข้อมูลเช่นชุดข้อมูลราคาบ้านบอสตันซึ่งฉันมีตัวแปรแบบต่อเนื่องและหมวดหมู่ ที่นี่เรามีตัวแปร "คุณภาพ" ตั้งแต่ 1 ถึง 10 และราคาขาย ฉันสามารถแยกข้อมูลออกเป็นบ้านคุณภาพ "ต่ำ", "ปานกลาง" และ "สูง" โดย (โดยพลการ) สร้างการตัดเพื่อคุณภาพ จากนั้นใช้การจัดกลุ่มเหล่านี้ฉันสามารถพล็อตฮิสโตแกรมของราคาขายต่อกันได้ ชอบมาก ที่นี่ "ต่ำ" คือและ "สูง" คือในคะแนน "คุณภาพ" ตอนนี้เรามีการกระจายของราคาขายสำหรับแต่ละกลุ่ม เป็นที่ชัดเจนว่ามีความแตกต่างในศูนย์กลางของที่ตั้งสำหรับบ้านขนาดกลางและคุณภาพสูง ตอนนี้เมื่อทำสิ่งนี้ทั้งหมดเสร็จฉันคิดว่า "หืมดูเหมือนว่าจะมีความแตกต่างในจุดศูนย์กลางของที่ตั้ง! จากนั้นฉันได้รับค่า p ที่ดูเหมือนว่าจะปฏิเสธสมมติฐานว่างที่ถูกต้องว่าไม่มีความแตกต่างในค่าเฉลี่ย≤ 3≤3\leq 3> 7>7>7 ทีนี้สมมติว่าฉันไม่มีอะไรในใจที่จะทดสอบสมมติฐานนี้จนกว่าฉันจะพล็อตข้อมูล ข้อมูลนี้ขุดลอกหรือไม่ มันยังคงเป็นข้อมูลที่ขุดขึ้นมาหรือไม่ถ้าฉันคิดว่า: "หืมฉันว่าบ้านคุณภาพสูงราคาแพงกว่าเพราะฉันเป็นมนุษย์ที่เคยอาศัยอยู่ในบ้านก่อนหน้านี้ฉันจะลงจุดข้อมูลอาฮ่า! เพื่อทดสอบ t! " ตามธรรมชาติแล้วมันไม่ใช่การขุดลอกข้อมูลถ้าชุดข้อมูลถูกเก็บรวบรวมด้วยความตั้งใจที่จะทดสอบสมมติฐานนี้จากการเดินทาง แต่บ่อยครั้งที่เราต้องทำงานกับชุดข้อมูลที่เรามอบให้และบอกให้ "มองหารูปแบบ" บางคนหลีกเลี่ยงการขุดข้อมูลด้วยงานที่คลุมเครือในใจ สร้างชุดค้างไว้สำหรับการทดสอบข้อมูลหรือไม่ การสร้างภาพข้อมูล "นับ" เป็นการสอดแนมโอกาสที่จะทดสอบสมมติฐานที่เสนอโดยข้อมูลหรือไม่

3
รองรับมุมมองที่ยึดที่มั่นของค่า p
บางครั้งในรายงานฉันมีข้อจำกัดความรับผิดชอบเกี่ยวกับค่า p และสถิติเชิงอนุมานอื่น ๆ ที่ฉันได้ให้ไว้ ฉันบอกว่าเนื่องจากตัวอย่างไม่สุ่มดังนั้นสถิติดังกล่าวจะไม่ใช้อย่างเคร่งครัด ถ้อยคำเฉพาะของฉันมักจะได้รับในเชิงอรรถ: "ในขณะที่การพูดอย่างเคร่งครัดสถิติเชิงอนุมานใช้ได้เฉพาะในบริบทของการสุ่มตัวอย่างเราปฏิบัติตามการประชุมในการรายงานระดับนัยสำคัญและ / หรือช่วงความเชื่อมั่นเป็นแนวทางที่สะดวกแม้สำหรับตัวอย่างที่ไม่สุ่มดูการอนุมานทางสถิติของ Michael Oakes : พฤติกรรมศาสตร์ (NY: Wiley, 1986) ในโอกาสสองครั้ง - หนึ่งครั้งสำหรับเอกสารที่ผ่านการตรวจสอบโดยเพื่อนครั้งหนึ่งหรือสองครั้งในการตั้งค่าที่ไม่ใช่เชิงวิชาการ - บรรณาธิการหรือผู้ตรวจสอบคัดค้านข้อจำกัดความรับผิดชอบนี้เรียกมันว่าทำให้สับสนและรู้สึกว่าการค้นพบเชิงอนุมาน (และจะได้รับเสื้อคลุมของผู้มีอำนาจ) มีใครประสบปัญหานี้และหาทางออกที่ดี? ในอีกด้านหนึ่งความเข้าใจของผู้คนเกี่ยวกับค่า p โดยทั่วไปมักจะไม่พอใจแม้แต่ในบริบทของการสุ่มตัวอย่างดังนั้นบางทีมันอาจจะไม่สำคัญกับสิ่งที่เราพูด ในอีกทางหนึ่งการมีส่วนร่วมต่อไปกับความเข้าใจผิดดูเหมือนจะทำให้ส่วนหนึ่งของปัญหา ฉันควรเพิ่มว่าฉันมักจะจัดการกับการศึกษาการสำรวจที่ไม่ได้รับมอบหมายแบบสุ่มและสถานที่ที่การจำลองสถานการณ์ของมอนติคาร์โลมักจะล้มเหลวในการแก้ไขปัญหาของการเป็นตัวแทน

7
การอนุมานกับการประมาณค่า?
อะไรคือความแตกต่างระหว่าง "การอนุมาน" และ "การประมาณค่า" ภายใต้บริบทของการเรียนรู้ของเครื่อง ? ในฐานะมือใหม่ฉันรู้สึกว่าเราอนุมานตัวแปรแบบสุ่มและประเมินพารามิเตอร์โมเดล ความเข้าใจนี้ถูกต้องหรือไม่ ถ้าไม่สิ่งที่แตกต่างกันคืออะไรและเมื่อใดที่ฉันควรใช้ นอกจากนี้คำพ้องความหมายของคำว่า "เรียนรู้" คืออะไร?

5
วิธีจัดการกับข้อมูลแบบลำดับชั้น / ซ้อนในการเรียนรู้ของเครื่อง
ฉันจะอธิบายปัญหาด้วยตัวอย่าง สมมติว่าคุณต้องการที่จะทำนายรายได้ของแต่ละบุคคลที่มีคุณลักษณะบางอย่าง: {อายุ, เพศ, ประเทศ, ภูมิภาค, เมือง} คุณมีชุดข้อมูลการฝึกอบรมเช่นนั้น train <- data.frame(CountryID=c(1,1,1,1, 2,2,2,2, 3,3,3,3), RegionID=c(1,1,1,2, 3,3,4,4, 5,5,5,5), CityID=c(1,1,2,3, 4,5,6,6, 7,7,7,8), Age=c(23,48,62,63, 25,41,45,19, 37,41,31,50), Gender=factor(c("M","F","M","F", "M","F","M","F", "F","F","F","M")), Income=c(31,42,71,65, 50,51,101,38, 47,50,55,23)) train CountryID RegionID CityID Age Gender Income 1 1 1 1 23 M 31 2 1 1 1 48 F 42 3 …
29 regression  machine-learning  multilevel-analysis  correlation  dataset  spatial  paired-comparisons  cross-correlation  clustering  aic  bic  dependent-variable  k-means  mean  standard-error  measurement-error  errors-in-variables  regression  multiple-regression  pca  linear-model  dimensionality-reduction  machine-learning  neural-networks  deep-learning  conv-neural-network  computer-vision  clustering  spss  r  weighted-data  wilcoxon-signed-rank  bayesian  hierarchical-bayesian  bugs  stan  distributions  categorical-data  variance  ecology  r  survival  regression  r-squared  descriptive-statistics  cross-section  maximum-likelihood  factor-analysis  likert  r  multiple-imputation  propensity-scores  distributions  t-test  logit  probit  z-test  confidence-interval  poisson-distribution  deep-learning  conv-neural-network  residual-networks  r  survey  wilcoxon-mann-whitney  ranking  kruskal-wallis  bias  loss-functions  frequentist  decision-theory  risk  machine-learning  distributions  normal-distribution  multivariate-analysis  inference  dataset  factor-analysis  survey  multilevel-analysis  clinical-trials 

3
ถ้าตัวอย่างแบบสุ่มของคุณไม่ได้เป็นตัวแทนอย่างชัดเจนล่ะ
เกิดอะไรขึ้นถ้าคุณใช้ตัวอย่างที่สุ่มและคุณสามารถเห็นมันได้อย่างชัดเจนไม่ได้เป็นตัวแทนเช่นเดียวกับในคำถามที่ผ่านมา ตัวอย่างเช่นถ้าการกระจายตัวของประชากรควรมีความสมมาตรประมาณ 0 และตัวอย่างที่คุณวาดแบบสุ่มนั้นมีการสังเกตเชิงบวกและลบที่ไม่สมดุลและความไม่สมดุลนั้นมีนัยสำคัญทางสถิตินั่นจะทำให้คุณอยู่ที่ไหน คุณสามารถสร้างประโยคที่สมเหตุสมผลเกี่ยวกับประชากรจากกลุ่มตัวอย่างที่มีอคติได้อย่างไร การกระทำที่เหมาะสมในสถานการณ์เช่นนี้คืออะไร? การวิจัยของเรามีความสำคัญเมื่อเราสังเกตเห็นความไม่สมดุลนี้หรือไม่?

โดยการใช้ไซต์ของเรา หมายความว่าคุณได้อ่านและทำความเข้าใจนโยบายคุกกี้และนโยบายความเป็นส่วนตัวของเราแล้ว
Licensed under cc by-sa 3.0 with attribution required.