เปลี่ยนจากการทำแบบจำลองกระบวนการโดยใช้การกระจายแบบปัวซงเพื่อใช้การกระจายแบบลบแบบทวินาม?
\newcommand{\P}{\mathbb{P}}เรามีขั้นตอนการสุ่มที่อาจจะหรืออาจจะไม่เกิดขึ้นหลายครั้งในระยะเวลาที่กำหนดของเวลาTเรามีฟีดข้อมูลจากรูปแบบที่มีอยู่ก่อนของกระบวนการนี้ที่ให้ความน่าจะเป็นของจำนวนของเหตุการณ์ที่เกิดขึ้นในช่วงเวลาที่<T โมเดลที่มีอยู่นี้เก่าและเราจำเป็นต้องเรียกใช้การตรวจสอบสดกับข้อมูลฟีดสำหรับข้อผิดพลาดในการประเมิน รุ่นเก่าผลิตข้อมูลฟีด (ซึ่งจะให้ความน่าจะเป็นของเหตุการณ์ที่เกิดขึ้นในเวลาที่เหลืออีก ) จะอยู่ที่ประมาณ Poisson กระจายTTT0≤t<T0≤t<T0 \leq t < Tnnnttt ดังนั้นเพื่อตรวจสอบความผิดปกติ / ข้อผิดพลาดเราปล่อยให้tttเป็นเวลาที่เหลืออยู่และXtXtX_tเป็นจำนวนรวมของเหตุการณ์ที่จะเกิดขึ้นในระยะเวลาที่เหลือทีtttรุ่นเก่าหมายถึงการประมาณการP(Xt≤c)P(Xt≤c)\P(X_t \leq c)ค) ดังนั้นภายใต้สมมติฐานของเราXt∼Poisson(λt)Xt∼Poisson(λt)X_t\sim \operatorname{Poisson}(\lambda_{t})เรามี: P(Xt≤c)=e−λ∑k=0cλktk!.P(Xt≤c)=e−λ∑k=0cλtkk!. \P(X_t \leq c) = e^{-\lambda}\sum_{k=0}^c\frac{\lambda_t^k}{k!}\,. เพื่อให้ได้อัตราการจัดกิจกรรมของเราλtλt\lambda_tจากเอ้าท์พุทของโมเดลเก่า (การสังเกตytyty_{t} ) เราใช้วิธีพื้นที่ของรัฐและสร้างแบบจำลองความสัมพันธ์ของรัฐเป็น: yt=λt+εt(εt∼N(0,Ht)).yt=λt+εt(εt∼N(0,Ht)). y_t = \lambda_t + \varepsilon_t\quad (\varepsilon_t \sim N(0, H_t))\,. เรากรองการสังเกตจากแบบจำลองเก่าโดยใช้แบบจำลองพื้นที่รัฐ [การสลายตัวด้วยความเร็วคงที่] สำหรับการวิวัฒนาการของλtλt\lambda_tเพื่อรับสถานะการกรองE(λt|Yt)E(λt|Yt)E(\lambda_t|Y_t)และตั้งค่าสถานะความผิดปกติ / ความผิดพลาดในความถี่เหตุการณ์โดยประมาณจาก ที่ฟีดข้อมูลหากE(λt|Yt)<ytE(λt|Yt)<ytE(\lambda_t|Y_t) < y_t<y_t วิธีการนี้ใช้งานได้ดีในการรับข้อผิดพลาดในเหตุการณ์ที่คาดการณ์นับในช่วงเวลาTเต็มรูปแบบTTTแต่ไม่ดีถ้าเราต้องการทำเช่นเดียวกันสำหรับช่วงเวลาอื่น0≤t<σ0≤t<σ0 \leq t …