1
การทดสอบทางสถิติทั่วไปเป็นแบบจำลองเชิงเส้น
(อัปเดต: ฉันพุ่งลึกเข้าไปในสิ่งนี้และโพสต์ผลลัพธ์ที่นี่ ) รายการทดสอบทางสถิติที่ตั้งชื่อนั้นมีขนาดใหญ่มาก การทดสอบทั่วไปจำนวนมากอาศัยการอนุมานจากโมเดลเชิงเส้นอย่างง่ายเช่นหนึ่งตัวอย่าง t-test คือy = β + εซึ่งทดสอบกับแบบจำลองโมฆะy = μ + εนั่นคือβ = μโดยที่μเป็นโมฆะบางอย่าง ค่า - โดยทั่วไปแล้วμ = 0 ฉันคิดว่านี่เป็นคำแนะนำเพื่อวัตถุประสงค์ในการสอนมากกว่าการเรียนรู้แบบท่องจำที่มีชื่อเมื่อใช้และสมมติฐานของพวกเขาราวกับว่าพวกเขาไม่มีอะไรเกี่ยวข้องกัน วิธีการส่งเสริมนั้นไม่ส่งเสริมความเข้าใจ อย่างไรก็ตามฉันไม่สามารถหาแหล่งรวบรวมที่ดีได้ ฉันสนใจในการเปรียบเทียบระหว่างโมเดลพื้นฐานมากกว่าวิธีการอนุมานจากพวกเขา แม้ว่าเท่าที่ฉันเห็นการทดสอบอัตราส่วนความน่าจะเป็นในตัวแบบเชิงเส้นทั้งหมดนี้ให้ผลลัพธ์แบบเดียวกับการอนุมานแบบ "คลาสสิค" ต่อไปนี้เป็นสิ่งที่ฉันได้เรียนรู้มาโดยไม่คำนึงถึงข้อผิดพลาดและสมมติว่าสมมติฐานว่างทั้งหมดไม่มีผล:ε∼N(0,σ2)ε∼N(0,σ2)\varepsilon \sim \mathcal N(0, \sigma^2) หนึ่งตัวอย่าง t-test: 0y=β0H0:β0=0y=β0H0:β0=0y = \beta_0 \qquad \mathcal{H}_0: \beta_0 = 0 t-test ตัวอย่างแบบจับคู่: y2−y1=β0H0:β0=0y2−y1=β0H0:β0=0y_2-y_1 = \beta_0 \qquad \mathcal{H}_0: …