คำถามติดแท็ก arima

อ้างถึงโมเดลค่าเฉลี่ยเคลื่อนที่แบบรวมการลงทะเบียนอัตโนมัติที่ใช้ในการสร้างแบบจำลองอนุกรมเวลาทั้งสำหรับคำอธิบายข้อมูลและสำหรับการคาดการณ์ โมเดลนี้ทำให้โมเดล ARMA โดยทั่วไปรวมคำศัพท์สำหรับการหาอนุพันธ์ต่าง ๆ ซึ่งมีประโยชน์สำหรับการลบแนวโน้มและการจัดการกับความไม่แน่นอนบางประเภท

2
การประเมิน ARIMA ด้วยมือ
ฉันพยายามที่จะเข้าใจวิธีการประมาณค่าพารามิเตอร์ในการสร้างแบบจำลอง ARIMA / Box Jenkins (BJ) น่าเสียดายที่ไม่มีหนังสือเล่มใดที่ฉันได้พบอธิบายขั้นตอนการประมาณค่าเช่นขั้นตอนการประมาณความน่าจะเป็นบันทึกโดยละเอียด ฉันพบเว็บไซต์ / สื่อการสอนที่มีประโยชน์มาก ต่อไปนี้เป็นสมการจากแหล่งอ้างอิงข้างต้น L L ( θ ) = - n2เข้าสู่ระบบ( 2 π) - n2เข้าสู่ระบบ( σ2) - ∑t = 1nอี2เสื้อ2 σ2LL(θ)=-n2เข้าสู่ระบบ⁡(2π)-n2เข้าสู่ระบบ⁡(σ2)-Σเสื้อ=1nอีเสื้อ22σ2 LL(\theta)=-\frac{n}{2}\log(2\pi) - \frac{n}{2}\log(\sigma^2) - \sum\limits_{t=1}^n\frac{e_t^2}{2\sigma^2} ฉันต้องการเรียนรู้การประมาณค่า ARIMA / BJ ด้วยการทำเอง ดังนั้นฉันจึงใช้เพื่อเขียนโค้ดเพื่อประมาณค่า ARMA ด้วยมือ ด้านล่างนี้คือสิ่งที่ผมทำในR ,RRRRRR ฉันจำลอง ARMA (1,1) เขียนสมการข้างต้นเป็นฟังก์ชัน ใช้ข้อมูลจำลองและฟังก์ชันเพิ่มประสิทธิภาพเพื่อประมาณค่าพารามิเตอร์ AR …

1
การพยากรณ์อนุกรมเวลาด้วยข้อมูลรายวัน: ARIMA พร้อม regressor
ฉันใช้ชุดข้อมูลการขายรายวันที่มีจุดข้อมูลรายวันประมาณ 2 ปี จากบทเรียนออนไลน์ / ตัวอย่างบางส่วนฉันพยายามระบุฤดูกาลในข้อมูล ดูเหมือนว่ามีรายสัปดาห์รายเดือนและอาจเป็นระยะ / ปีตามฤดูกาล ตัวอย่างเช่นมีวันจ่ายเงินโดยเฉพาะอย่างยิ่งในวันที่ 1 ของเดือนที่มีผลในสองสามวันในช่วงสัปดาห์ นอกจากนี้ยังมีเอฟเฟกต์วันหยุดบางอย่างซึ่งสามารถระบุได้อย่างชัดเจนโดยสังเกตจากการสังเกต เมื่อติดตั้งกับข้อสังเกตเหล่านี้ฉันได้ลองทำสิ่งต่อไปนี้: ARIMA (พร้อมArimaและauto.arimaจากแพคเกจ R- คาดการณ์) โดยใช้ regressor (และค่าเริ่มต้นอื่น ๆ ที่จำเป็นในการทำงาน) regressor ที่ฉันสร้างนั้นเป็นเมทริกซ์ที่มีค่า 0/1: ตัวแปร 11 เดือน (n-1) 12 ตัวแปรวันหยุด ไม่สามารถหาส่วนของวันจ่ายเงินได้ ... เนื่องจากมันมีผลกระทบที่ซับซ้อนกว่าที่ฉันคิดเล็กน้อย เอฟเฟกต์ payday ทำงานแตกต่างกันไปขึ้นอยู่กับวันทำงานของวันที่ 1 ของเดือน ฉันใช้ 7 (เช่นความถี่รายสัปดาห์) เพื่อทำโมเดลอนุกรมเวลา ฉันลองทดสอบ - คาดการณ์ครั้งละ 7 วัน ผลลัพธ์มีความสมเหตุสมผล: …

4
สถิติ Ljung-Box สำหรับ ARIMA ที่เหลือใน R: ผลการทดสอบที่สับสน
ฉันมีอนุกรมเวลาที่ฉันพยายามคาดการณ์ซึ่งฉันใช้ ARIMA ตามฤดูกาล (0,0,0) (0,1,0) [12] โมเดล (= fit2) มันแตกต่างจากสิ่งที่ R แนะนำกับ auto.arima (R คำนวณ ARIMA (0,1,1) (0,1,0) [12] น่าจะเหมาะกว่าฉันตั้งชื่อมันว่า fit1) อย่างไรก็ตามในช่วง 12 เดือนสุดท้ายของซีรีส์เวลาของฉันโมเดลของฉัน (พอดี 2) ดูเหมือนจะดีกว่าเมื่อปรับแล้ว (มันมีอคติเรื้อรังฉันได้เพิ่มค่าเฉลี่ยที่เหลือ นี่คือตัวอย่างของ 12 เดือนล่าสุดและ MAPE สำหรับ 12 เดือนล่าสุดสำหรับทั้งสองพอดี: อนุกรมเวลามีลักษณะดังนี้: จนถึงตอนนี้ดีมาก ฉันทำการวิเคราะห์ที่เหลือสำหรับทั้งสองรุ่นและนี่คือความสับสน acf (ส่วนที่เหลือ (พอดี 1)) ดูดีมากเสียงดังมาก: อย่างไรก็ตามการทดสอบ Ljung-Box นั้นดูไม่ดีเช่น 20 lags: Box.test(resid(fit1),type="Ljung",lag=20,fitdf=1) ฉันได้รับผลลัพธ์ต่อไปนี้: …

5
วิธีจัดการกับซีรี่ส์หลายต่อหลายครั้งพร้อมกัน?
ฉันมีชุดข้อมูลรวมถึงความต้องการของผลิตภัณฑ์ต่าง ๆ (1200 ผลิตภัณฑ์) เป็นระยะเวลา 25 ระยะและฉันจำเป็นต้องทำนายความต้องการของแต่ละผลิตภัณฑ์สำหรับงวดถัดไป ตอนแรกฉันต้องการใช้ ARIMA และฝึกอบรมแบบจำลองสำหรับแต่ละผลิตภัณฑ์ แต่เนื่องจากจำนวนของผลิตภัณฑ์และการปรับพารามิเตอร์ (p, d, q) ทำให้ใช้เวลานานมากและไม่สามารถใช้งานได้จริง แนะนำให้ใช้การถดถอยที่ความต้องการก่อนหน้าเป็นตัวแปรอิสระ (Autoregressive) หรือไม่? ฉันจะรู้ได้อย่างไรว่ามีวิธีใดที่จะฝึกอบรมแบบจำลองเดียวสำหรับการทำนายความต้องการผลิตภัณฑ์ทั้ง 1200 รายการ ฉันจะขอบคุณถ้าคุณสามารถแนะนำห้องสมุดใด ๆ ใน Python เพราะฉันใช้ Python

2
ARMA / ARIMA เกี่ยวข้องกับการสร้างแบบจำลองเอฟเฟกต์ผสมอย่างไร?
ในการวิเคราะห์ข้อมูลแบบพาเนลฉันใช้โมเดลหลายระดับพร้อมเอฟเฟ็กต์แบบสุ่ม / ผสมเพื่อจัดการกับปัญหาความสัมพันธ์อัตโนมัติ (เช่นการสังเกตมีการรวมกลุ่มภายในบุคคลเมื่อเวลาผ่านไป) ด้วยพารามิเตอร์อื่น ๆ ที่เพิ่มเข้ามาเพื่อปรับตามเวลาและแรงกระแทก . ดูเหมือน ARMA / ARIMA ออกแบบมาเพื่อแก้ไขปัญหาที่คล้ายกัน ทรัพยากรที่ฉันพบออนไลน์สนทนาทั้งชุด (ARMA / ARIMA) หรือโมเดลเอฟเฟกต์แบบผสม แต่นอกเหนือจากการสร้างความถดถอยฉันไม่เข้าใจความสัมพันธ์ระหว่างทั้งสอง มีใครต้องการใช้ ARMA / ARIMA จากภายในรุ่นหลายระดับหรือไม่ มีความรู้สึกในสิ่งที่ทั้งสองจะเทียบเท่าหรือซ้ำซ้อน? คำตอบหรือตัวชี้ไปยังแหล่งข้อมูลที่กล่าวถึงเรื่องนี้จะดีมาก

2
การเลือกโมเดล Box-Jenkins
ขั้นตอนการคัดเลือกแบบจำลอง Box-Jenkins ในการวิเคราะห์อนุกรมเวลาเริ่มต้นขึ้นโดยดูที่ฟังก์ชันการหาค่าความสัมพันธ์และฟังก์ชั่นความสัมพันธ์แบบกึ่งอัตโนมัติบางส่วนของชุดข้อมูล พล็อตเหล่านี้สามารถแนะนำและqที่เหมาะสมในโมเดลARMA ( p , q ) ขั้นตอนดำเนินการต่อโดยขอให้ผู้ใช้ใช้เกณฑ์ AIC / BIC เพื่อเลือกแบบจำลองที่เป็นทางเลือกมากที่สุดในบรรดารุ่นที่สร้างแบบจำลองที่มีเงื่อนไขข้อผิดพลาดของสัญญาณรบกวนสีขาวพีพีpQQq( p , q)(พี,Q)(p,q) ฉันสงสัยว่าขั้นตอนเหล่านี้ของการตรวจสอบด้วยภาพและการเลือกแบบจำลองตามเกณฑ์นั้นมีผลต่อข้อผิดพลาดมาตรฐานโดยประมาณของรุ่นสุดท้ายอย่างไร ฉันรู้ว่าขั้นตอนการค้นหาจำนวนมากในโดเมนแบบตัดขวางอาจมีอคติข้อผิดพลาดมาตรฐานลดลงเช่น ในขั้นตอนแรกการเลือกจำนวนล่าช้าที่เหมาะสมโดยการดูข้อมูล (ACF / PACF) ส่งผลต่อข้อผิดพลาดมาตรฐานสำหรับรุ่นอนุกรมเวลาอย่างไร ฉันเดาว่าการเลือกรูปแบบตามคะแนน AIC / BIC จะมีผลกระทบคล้ายกับวิธีการแบบตัดขวาง จริง ๆ แล้วฉันไม่ทราบเกี่ยวกับพื้นที่นี้มากนักดังนั้นความคิดเห็นใด ๆ ก็จะได้รับการชื่นชมในจุดนี้เช่นกัน สุดท้ายหากคุณจดบันทึกเกณฑ์ที่แม่นยำซึ่งใช้สำหรับแต่ละขั้นตอนคุณสามารถบูตกระบวนการทั้งหมดเพื่อประเมินข้อผิดพลาดมาตรฐานและกำจัดข้อกังวลเหล่านี้ได้หรือไม่

4
อะไรคือความแตกต่างของ "เชิงกล" ระหว่างการถดถอยเชิงเส้นแบบหลายจุดด้วย lags และอนุกรมเวลา
ฉันสำเร็จการศึกษาด้านธุรกิจและเศรษฐศาสตร์ซึ่งกำลังศึกษาระดับปริญญาโทด้านวิศวกรรมข้อมูล ในขณะที่กำลังศึกษาการถดถอยเชิงเส้น (LR) และการวิเคราะห์อนุกรมเวลา (TS) คำถามหนึ่งก็ผุดขึ้นในใจของฉัน เหตุใดจึงต้องสร้างวิธีการใหม่ทั้งหมดเช่นอนุกรมเวลา (ARIMA) แทนที่จะใช้การถดถอยเชิงเส้นหลายเส้นและการเพิ่มตัวแปรที่ล้าหลัง (โดยใช้คำสั่งล่าช้าที่กำหนดโดยใช้ ACF และ PACF) ดังนั้นอาจารย์แนะนำให้ฉันเขียนเรียงความเล็ก ๆ น้อย ๆ เกี่ยวกับปัญหา ฉันจะไม่ขอความช่วยเหลือจากมือเปล่าดังนั้นฉันจึงทำการวิจัยในหัวข้อนี้ ฉันรู้แล้วว่าเมื่อใช้ LR หากการละเมิดสมมติฐานของเกาส์ - มาร์คอฟการถดถอยของ OLS นั้นไม่ถูกต้องและสิ่งนี้เกิดขึ้นเมื่อใช้ข้อมูลอนุกรมเวลา (ความสัมพันธ์อัตโนมัติเป็นต้น) (คำถามอื่นเกี่ยวกับเรื่องนี้สมมุติฐานของจีเอ็มหนึ่งข้อคือตัวแปรอิสระควรแจกแจงตามปกติหรือเพียงแค่ตัวแปรตามเงื่อนไขให้กับตัวแปรอิสระ) ฉันรู้ด้วยว่าเมื่อใช้การถดถอยแบบกระจายแบบกระจายซึ่งเป็นสิ่งที่ฉันคิดว่าฉันเสนอที่นี่และการใช้ OLS เพื่อประเมินค่าพารามิเตอร์ความหลากหลายทางหลายทางระหว่างตัวแปรอาจเกิดขึ้นอย่างชัดเจนดังนั้นการประมาณจึงผิด ในโพสต์ที่คล้ายกันเกี่ยวกับ TS และ LRที่นี่ @IrishStat กล่าวว่า: ... แบบจำลองการถดถอยเป็นกรณีเฉพาะของ Transfer Function Model หรือที่รู้จักกันในชื่อรุ่นการถดถอยแบบไดนามิกหรือรุ่น XARMAX จุดสำคัญคือการระบุรูปแบบในอนุกรมเวลานั่นคือความแตกต่างที่เหมาะสมความล่าช้าที่เหมาะสมของ X โครงสร้าง ARIMA ที่เหมาะสมการระบุที่เหมาะสมของโครงสร้างที่ไม่ระบุรายละเอียดที่กำหนดเช่นพัลส์ระดับเลื่อนแนวโน้มเวลาท้องถิ่นฤดูกาลและการรวม บริษัท …

1
การพยากรณ์อนุกรมเวลาของ Arima (auto.arima) ที่มีตัวแปรที่แปลกประหลาดหลายตัวใน R
ฉันต้องการดำเนินการคาดการณ์ตามแบบอนุกรมเวลา ARIMA หลายรุ่นพร้อมกับตัวแปรที่แปลกประหลาดหลายตัว เนื่องจากฉันไม่ใช่ทักษะที่เกี่ยวข้องกับสถิติและ RI ที่ไม่ต้องการเก็บไว้เป็นเรื่องง่ายที่สุดเท่าที่จะทำได้ (การพยากรณ์แนวโน้ม 3 เดือนก็เพียงพอแล้ว) ฉันมีอนุกรมเวลา 1 ชุดและอนุกรมเวลาตัวทำนาย 3-5 ชุดข้อมูลรายเดือนทั้งหมดไม่มีช่องว่าง "ขอบฟ้า" ในเวลาเดียวกัน ฉันพบฟังก์ชัน auto.arima และถามตัวเองว่านี่จะเป็นวิธีการแก้ปัญหาที่เหมาะสมสำหรับปัญหาของฉันหรือไม่ ฉันมีราคาสินค้าโภคภัณฑ์ที่แตกต่างและราคาของผลิตภัณฑ์ที่ทำจากพวกเขา ข้อมูลดิบทั้งหมดไม่อยู่นิ่ง แต่ผ่านความแตกต่างในการสั่งซื้อครั้งแรกพวกเขาทั้งหมดกลายเป็นข้อมูลนิ่ง ADF, KPSS ระบุสิ่งนี้ (ซึ่งหมายความว่าฉันได้ทดสอบการรวมระบบแล้วใช่ไหม) คำถามของฉันคือ: ฉันจะใช้สิ่งนี้กับฟังก์ชั่น auto.arima และ ARIMA เป็นวิธีการที่ถูกต้องได้อย่างไร? ppl บางคนแนะนำให้ฉันใช้ VAR แล้ว แต่เป็นไปได้ไหมกับ ARIMA ด้วย? ตารางต่อไปนี้เป็นข้อมูลของฉัน ที่จริงแล้วชุดข้อมูลขึ้นไป 105 ข้อสังเกต แต่ 50 แรกจะทำ เทรนด์และฤดูกาลเป็นที่สนใจอย่างชัดเจนที่นี่ ขอบคุณสำหรับคำแนะนำและความช่วยเหลือ! เฟรดริก
14 r  time-series  arima 

1
การสร้างแบบจำลองอนุกรมเวลาของข้อมูลวงกลม
ฉันกำลังสร้างแบบจำลอง ARIMA สำหรับข้อมูลลม / คลื่น ฉันกำลังสร้างแบบจำลองแยกสำหรับตัวแปรแต่ละตัว ตัวแปรสองตัวที่ฉันต้องจำลองคือคลื่นและทิศทางลม ค่าอยู่ในหน่วยองศา (0-360 °) เป็นไปได้หรือไม่ที่จะสร้างแบบจำลองของข้อมูลประเภทนี้ที่ช่วงค่าเป็นแบบวงกลม? ถ้าไม่ใช่คลาสรุ่นใดที่เหมาะที่สุดสำหรับข้อมูลประเภทนี้?

2
ขั้นตอนและวิธีวิเคราะห์ Timeseries โดยใช้ R
ฉันกำลังทำงานในโครงการขนาดเล็กที่เราพยายามคาดการณ์ราคาสินค้า (น้ำมันอลูมิเนียมดีบุก ฯลฯ ) ในอีก 6 เดือนข้างหน้า ฉันมีตัวแปรดังกล่าว 12 ตัวที่จะทำนายและฉันมีข้อมูลตั้งแต่ เม.ย. 2551 - พ.ค. 2556 ฉันจะทำนายอย่างไรดี? ฉันทำสิ่งต่อไปนี้แล้ว: นำเข้าข้อมูลเป็นชุดข้อมูล Timeseries ฤดูกาลทั้งหมดของตัวแปรมีแนวโน้มที่จะแปรผันตามเทรนด์ดังนั้นฉันจะเป็นแบบจำลองแบบคูณ ฉันนำ log ของตัวแปรมาแปลงเป็นสารเติมแต่ง สำหรับแต่ละตัวแปรที่ย่อยสลายข้อมูลโดยใช้ STL ฉันวางแผนที่จะใช้การทำให้เรียบแบบเลขชี้กำลังของโฮลท์วินเทอร์ ARIMA และโครงข่ายใยประสาทเทียมในการคาดการณ์ ฉันแบ่งข้อมูลเป็นการฝึกอบรมและทดสอบ (80, 20) วางแผนที่จะเลือกรุ่นที่มีแม่, MPE, MAPE และ MASE น้อยลง ฉันทำถูกไหม? อีกคำถามหนึ่งที่ฉันเคยมีก่อนที่จะส่งต่อไปยัง ARIMA หรือโครงข่ายประสาทฉันควรทำให้ข้อมูลราบรื่นหรือไม่? ถ้าใช่ใช้อะไร? ข้อมูลแสดงทั้งฤดูกาลและแนวโน้ม แก้ไข: การแนบพล็อตชุดข้อมูลและข้อมูล Year <- c(2008, 2008, 2008, …

2
ARIMA vs ARMA ในซีรี่ส์ที่ต่างกัน
ใน R (2.15.2) ฉันติดตั้ง ARIMA หนึ่งครั้ง (3,1,3) ในอนุกรมเวลาหนึ่งครั้งและ ARMA (3,3) หนึ่งครั้งในช่วงเวลาที่ต่างกัน พารามิเตอร์ที่ติดตั้งแตกต่างกันซึ่งฉันอ้างถึงวิธีการติดตั้งใน ARIMA นอกจากนี้การติดตั้ง ARIMA (3,0,3) ในข้อมูลเดียวกันกับ ARMA (3,3) จะไม่ส่งผลให้มีพารามิเตอร์เหมือนกันไม่ว่าวิธีการฟิตติ้งที่ฉันใช้จะเป็นอย่างไร ฉันสนใจที่จะระบุว่าความแตกต่างนั้นมาจากไหนและด้วยพารามิเตอร์ใดที่ฉันสามารถทำได้ (ถ้าหากทั้งหมด) พอดีกับ ARIMA เพื่อให้ได้ค่าสัมประสิทธิ์ของความพอดีเหมือนกับ ARMA รหัสตัวอย่างที่จะสาธิต: library(tseries) set.seed(2) #getting a time series manually x<-c(1,2,1) e<-c(0,0.3,-0.2) n<-45 AR<-c(0.5,-0.4,-0.1) MA<-c(0.4,0.3,-0.2) for(i in 4:n){ tt<-rnorm(1) t<-x[length(x)]+tt+x[i-1]*AR[1]+x[i-2]*AR[2]+x[i-3]*AR[3]+e[i-1]*MA[1]+e[i-2]*MA[2]+e[i-3]*MA[3] x<-c(x,t) e<-c(e,tt) } par(mfrow=c(2,1)) plot(x) plot(diff(x,1)) …
13 r  time-series  arima  fitting  arma 

4
มีการระบุรูปแบบโดย auto.arima () อย่างชัดเจนไหม?
ฉันพยายามเรียนรู้และนำแบบจำลอง ARIMA มาใช้ ฉันได้อ่านข้อความยอดเยี่ยมเกี่ยวกับ ARIMA โดย Pankratz - การพยากรณ์ด้วย Univariate Box - โมเดลเจนกินส์: แนวคิดและคดีต่างๆ ในข้อความที่ผู้เขียนเน้นเป็นพิเศษในการเลือกรูปแบบ ARIMA ผมเริ่มเล่นกับauto.arima()ฟังก์ชั่นในRแพคเกจการคาดการณ์ นี่คือสิ่งที่ผมทำผมจำลอง ARIMA auto.arima()และนำไปใช้แล้ว ด้านล่างเป็น 2 ตัวอย่าง อย่างที่คุณเห็นในตัวอย่างทั้งสองauto.arima()ระบุรูปแบบที่ชัดเจนว่าหลายคนอาจมองว่าไม่ใช้คำพูด โดยเฉพาะอย่างยิ่งในตัวอย่างที่ 2 ซึ่งauto.arima()ระบุ ARIMA (3,0,3) เมื่อจริง ๆ แล้ว ARIMA (1,0,1) น่าจะเพียงพอแล้ว ด้านล่างเป็นคำถามของฉัน ฉันขอขอบคุณข้อเสนอแนะและคำแนะนำใด ๆ มีคำแนะนำใดบ้างในการใช้ / แก้ไขโมเดลที่ระบุโดยใช้อัลกอริทึมอัตโนมัติเช่นauto.arima()? มีหลุมใดที่ใช้เพียง AIC (ซึ่งเป็นสิ่งที่ฉันคิดว่าauto.arima()ใช้) เพื่อระบุรูปแบบ? อัลกอริทึมอัตโนมัติที่สร้างขึ้นนั้นสามารถใช้จองหรือไม่? โดยวิธีที่ฉันใช้auto.arima()เป็นเพียงตัวอย่าง สิ่งนี้จะนำไปใช้กับอัลกอริทึมอัตโนมัติใด ๆ ด้านล่างคือตัวอย่าง …

4
อนุกรมเวลาที่ต่างกันก่อน Arima หรือภายใน Arima
มันจะดีกว่าที่จะแตกต่างชุด (สมมติว่ามันต้องการ) ก่อนที่จะใช้ Arima หรือดีกว่าที่จะใช้พารามิเตอร์ d ภายใน Arima? ฉันรู้สึกประหลาดใจที่ความแตกต่างของค่าที่ติดตั้งนั้นขึ้นอยู่กับเส้นทางที่ถ่ายด้วยแบบจำลองและข้อมูลเดียวกัน หรือฉันกำลังทำอะไรผิดพลาด? install.packages("forecast") library(forecast) wineindT<-window(wineind, start=c(1987,1), end=c(1994,8)) wineindT_diff <-diff(wineindT) #coefficients and other measures are similar modA<-Arima(wineindT,order=c(1,1,0)) summary(modA) modB<-Arima(wineindT_diff,order=c(1,0,0)) summary(modB) #fitted values from modA A<-forecast.Arima(modA,1)$fitted #fitted from modB, setting initial value to the first value in the original series B<-diffinv(forecast.Arima(modB,1)$fitted,xi=wineindT[1]) plot(A, col="red") lines(B, …
13 r  time-series  arima 

3
แบบจำลองอนุกรมเวลาทั้งหมด
ฉันต้องทำการพยากรณ์อนุกรมเวลาโดยอัตโนมัติและฉันไม่ทราบล่วงหน้าเกี่ยวกับคุณลักษณะของซีรี่ส์เหล่านั้น (ฤดูกาล, แนวโน้ม, เสียง, ฯลฯ ) เป้าหมายของฉันคือไม่ได้แบบที่ดีที่สุดเท่าที่จะเป็นไปได้สำหรับแต่ละซีรี่ย์ แต่เพื่อหลีกเลี่ยงโมเดลที่แย่มาก กล่าวอีกนัยหนึ่งการได้รับข้อผิดพลาดเล็ก ๆ น้อย ๆ ทุกครั้งไม่ใช่ปัญหา แต่จะได้รับข้อผิดพลาดใหญ่ ๆ เป็นครั้งคราว ฉันคิดว่าฉันสามารถทำสิ่งนี้ได้โดยการรวมโมเดลที่คำนวณด้วยเทคนิคที่แตกต่างกัน นั่นคือแม้ว่า ARIMA จะเป็นวิธีที่ดีที่สุดสำหรับซีรีส์หนึ่ง แต่มันอาจจะไม่ดีที่สุดสำหรับซีรีย์อื่น เช่นเดียวกับการปรับให้เรียบแบบเอกซ์โพเนนเชียล อย่างไรก็ตามถ้าฉันรวมโมเดลหนึ่งจากแต่ละเทคนิคแม้ว่าหนึ่งโมเดลจะไม่ดีนัก แต่อีกรุ่นจะนำค่าประมาณมาใกล้เคียงกับมูลค่าที่แท้จริงมากขึ้น เป็นที่ทราบกันดีว่า ARIMA ใช้งานได้ดีกว่าสำหรับซีรีย์ที่มีพฤติกรรมดีในระยะยาวในขณะที่การปรับให้เรียบแบบเอ็กซ์โปเนนเชียลนั้นดูโดดเด่นด้วยซีรีย์ที่มีเสียงรบกวนระยะสั้น ความคิดของฉันคือการรวมโมเดลที่สร้างจากทั้งสองเทคนิคเพื่อให้ได้การคาดการณ์ที่มีประสิทธิภาพยิ่งขึ้น อาจมีหลายวิธีในการรวมโมเดลเหล่านั้น หากนี่เป็นวิธีการที่ดีฉันจะรวมมันอย่างไร ค่าเฉลี่ยของการคาดการณ์อย่างง่ายคือตัวเลือก แต่บางทีฉันอาจได้การคาดการณ์ที่ดีกว่าถ้าฉันให้น้ำหนักค่าเฉลี่ยตามแบบวัดความดีของแบบจำลอง อะไรคือการรักษาความแปรปรวนเมื่อรวมตัวแบบ?

3
ACF & PACF ระบุลำดับของเงื่อนไข MA และ AR อย่างไร
เป็นเวลามากกว่า 2 ปีแล้วที่ฉันทำงานในซีรีย์ต่างเวลา ฉันได้อ่านบทความมากมายที่ ACF ใช้เพื่อระบุลำดับของคำ MA และ PACF สำหรับ AR มีกฎง่ายๆที่สำหรับ MA ความล่าช้าที่ ACF ปิดทันทีคือลำดับของ MA และในทำนองเดียวกันสำหรับ PACF และ AR นี่คือหนึ่งในบทความที่ฉันติดตามจาก PennState Eberly College of Science คำถามของฉันคือทำไมมันเป็นเช่นนั้น? สำหรับฉัน ACF ยังสามารถให้เทอม AR ได้ ฉันต้องการคำอธิบายของกฎง่ายๆที่กล่าวถึงข้างต้น ฉันไม่สามารถเข้าใจกฎง่ายๆได้อย่างง่ายดาย / ทางคณิตศาสตร์ว่าทำไม - การระบุรูปแบบ AR มักจะทำได้ดีที่สุดด้วย PACF การระบุรูปแบบ MA มักทำได้ดีที่สุดกับ ACF แทนที่จะเป็น PACF โปรดทราบ: - …

โดยการใช้ไซต์ของเรา หมายความว่าคุณได้อ่านและทำความเข้าใจนโยบายคุกกี้และนโยบายความเป็นส่วนตัวของเราแล้ว
Licensed under cc by-sa 3.0 with attribution required.