2
การทำให้เป็นมาตรฐานจะมีประโยชน์หรือไม่ถ้าเราสนใจเฉพาะการสร้างแบบจำลองไม่ใช่ในการคาดการณ์?
การทำให้เป็นมาตรฐานจะมีประโยชน์ถ้าเราสนใจเพียงการประมาณ (และการตีความ) พารามิเตอร์โมเดลไม่ใช่การพยากรณ์หรือการทำนาย? ฉันเห็นว่าการทำให้เป็นปกติ / การตรวจสอบข้ามมีประโยชน์มากเพียงใดหากเป้าหมายของคุณคือการคาดการณ์ที่ดีเกี่ยวกับข้อมูลใหม่ แต่ถ้าคุณทำเศรษฐศาสตร์แบบดั้งเดิมและสิ่งที่คุณสนใจก็คือการประมาณ ? การตรวจสอบข้ามจะมีประโยชน์ในบริบทนั้นได้หรือไม่ ความยากลำบากทางแนวคิดที่ฉันต่อสู้คือเราสามารถคำนวณจากข้อมูลการทดสอบ แต่เราไม่สามารถคำนวณเพราะจริง\ betaเป็นไปตามคำนิยามที่ไม่เคยสังเกต (รับตามข้อสันนิษฐานที่ว่าแม้จะมีจริง\ betaนั่นคือเรารู้ว่าครอบครัวของแบบจำลองที่สร้างข้อมูล)ββ\betaL(Y,Y^)L(Y,Y^)\mathcal{L}\left(Y, \hat{Y}\right)L(β,β^)L(β,β^)\mathcal{L}\left(\beta, \hat{\beta}\right)ββ\betaββ\beta สมมติว่าสูญเสียของคุณคือL(β,β^)=∥β−β^∥L(β,β^)=‖β−β^‖\mathcal{L}\left(\beta, \hat{\beta}\right) = \lVert \beta - \hat{\beta} \rVert\ คุณเผชิญกับการแลกเปลี่ยนอคติแปรปรวนใช่ไหม? ดังนั้นในทางทฤษฎีคุณน่าจะใช้การปรับให้เป็นมาตรฐานได้ดีกว่า แต่คุณจะเลือกพารามิเตอร์การทำให้เป็นมาตรฐานได้อย่างไร? ฉันยินดีที่จะเห็นตัวอย่างเชิงตัวเลขอย่างง่ายของตัวแบบการถดถอยเชิงเส้นพร้อมค่าสัมประสิทธิ์β≡(β1,β2,…,βk)β≡(β1,β2,…,βk)\beta \equiv (\beta_1, \beta_2, \ldots, \beta_k)ซึ่งฟังก์ชันการสูญเสียของนักวิจัยคือ∥β−β^∥‖β−β^‖\lVert \beta - \hat{\beta} \rVertหรือแม้เพียงแค่(β1−β^1)2(β1−β^1)2(\beta_1 - \hat{\beta}_1)^2 2 ในทางปฏิบัติเราสามารถใช้การตรวจสอบข้ามเพื่อปรับปรุงการสูญเสียที่คาดหวังในตัวอย่างเหล่านั้นได้อย่างไร แก้ไข : DJohnson ชี้ให้ฉันเห็นhttps://www.cs.cornell.edu/home/kleinber/aer15-prediction.pdfซึ่งเกี่ยวข้องกับคำถามนี้ ผู้เขียนเขียนว่า เทคนิคการเรียนรู้ของเครื่อง ... เป็นวิธีที่มีระเบียบวินัยในการทำนาย Y^Y^\hat{Y}ซึ่ง …