ทำไมข้อผิดพลาดมาตรฐานของการดักจับเพิ่มขึ้นอีกมาจาก 0
ข้อผิดพลาดมาตรฐานของคำดักจับ ( ) ในมอบให้โดย ที่คือ ค่าเฉลี่ยของ 'sβ^0β^0\hat{\beta}_0y=β1x+β0+εy=β1x+β0+εy=\beta_1x+\beta_0+\varepsilonSE(β^0)2=σ2[1n+x¯2∑ni=1(xi−x¯)2]SE(β^0)2=σ2[1n+x¯2∑i=1n(xi−x¯)2]SE(\hat{\beta}_0)^2 = \sigma^2\left[\frac{1}{n}+\frac{\bar{x}^2}{\sum_{i=1}^n(x_i-\bar{x})^2}\right]x¯x¯\bar{x}xixix_i จากสิ่งที่ฉันเข้าใจ SE คำนวณปริมาณความไม่แน่นอนของคุณ - ในตัวอย่าง 95%, ช่วงเวลาจะมีจริง . ผมไม่เข้าใจว่าทางทิศตะวันออก, ตัวชี้วัดของความไม่แน่นอนที่เพิ่มขึ้นกับ{x} ถ้าฉันเปลี่ยนข้อมูลของฉันดังนั้นความไม่แน่นอนของฉันลดลง ดูเหมือนว่าไม่มีเหตุผลβ 0 ˉ x ˉ x = 0[β^0−2SE,β^0+2SE][β^0−2SE,β^0+2SE][\hat{\beta}_0-2SE,\hat{\beta}_0+2SE]β0β0\beta_0x¯x¯\bar{x}x¯=0x¯=0\bar{x}=0 การตีความแบบอะนาล็อกคือ - ในเวอร์ชันที่ไม่มีข้อมูลของฉันสอดคล้องกับการทำนายของฉันที่ในขณะที่อยู่ตรงกลางข้อมูลสอดคล้องกับการทำนายของฉันที่{x} ดังนั้นนี้ไม่แล้วหมายความว่าความไม่แน่นอนของฉันเกี่ยวกับการทำนายของฉันที่มีค่ามากกว่าความไม่แน่นอนของฉันเกี่ยวกับการทำนายของฉันที่ ? ที่ดูเหมือนว่าไม่มีเหตุผลเกินไปข้อผิดพลาดมีความแปรปรวนเหมือนกันสำหรับทุกค่าของดังนั้นความไม่แน่นอนของฉันในค่าคาดการณ์ของฉันควรจะเหมือนกันสำหรับทุกxx=0 β 0x= ˉ x x=0x= ˉ x εxxβ^0β^0\hat{\beta}_0x=0x=0x=0β^0β^0\hat{\beta}_0x=x¯x=x¯x=\bar{x}x=0x=0x=0x=x¯x=x¯x=\bar{x}ϵϵ\epsilonxxxxxx มีช่องว่างในความเข้าใจของฉันฉันแน่ใจ มีใครช่วยให้ฉันเข้าใจว่าเกิดอะไรขึ้น?