การตีความทางเรขาคณิตของสัมประสิทธิ์สหสัมพันธ์
ฉันสนใจในความหมายทางเรขาคณิตของค่าสหสัมพันธ์และสัมประสิทธิ์การตัดสินใจในการถดถอยหรือในสัญกรณ์เวกเตอร์RRRR2R2R^2yi=β1+β2x2,i+⋯+βkxk,i+ϵiyi=β1+β2x2,i+⋯+βkxk,i+ϵiy_i = \beta_1 + \beta_2 x_{2,i} + \dots + \beta_k x_{k,i} + \epsilon_i y=Xβ+ϵy=Xβ+ϵ\mathbf{y} = \mathbf{X \beta} + \mathbf{\epsilon} นี่คือการออกแบบเมทริกซ์มีแถวและคอลัมน์ที่แรกคือ , เวกเตอร์ของ 1s ที่สอดคล้องกับการตัด\XX\mathbf{X}nnnkkkx1=1nx1=1n\mathbf{x}_1 = \mathbf{1}_nβ1β1\beta_1 รูปทรงเรขาคณิตน่าสนใจยิ่งขึ้นในพื้นที่หัวเรื่อง -dimensional มากกว่าในพื้นที่ตัวแปร -dimensional กำหนดเมทริกซ์หมวก:nnnkkk H=X(X⊤X)−1X⊤H=X(X⊤X)−1X⊤\mathbf{H} = \mathbf{X \left(X^\top X \right)}^{-1} \mathbf{X}^\top นี่คือการฉายฉากบนพื้นที่คอลัมน์ของคือแบน ผ่านกำเนิดทอดโดยเวกเตอร์เป็นตัวแทนของแต่ละตัวแปรคนแรกซึ่งเป็น\จากนั้นโครงการเวกเตอร์ของการตอบสนองที่สังเกตบน "เงา" ของมันบนพื้นราบเวกเตอร์ของค่าติดตั้งและถ้าเรา มองไปตามเส้นทางของเส้นโครงที่เราเห็นเวกเตอร์ของเศษเหลือสร้างด้านที่สามของรูปสามเหลี่ยม สิ่งนี้น่าจะให้ทางเราสองทางในการตีความทางเรขาคณิตของXX\mathbf{X}xฉัน1 n H Y Y = H …