ผลที่ตามมาของความไม่เท่าเทียมกันแบบเกาส์ความสัมพันธ์สำหรับการคำนวณช่วงความเชื่อมั่นร่วมกัน
อ้างอิงจากบทความที่น่าสนใจมากในนิตยสาร Quanta: "หลักฐานอันยาวนาน, พบและหลงทาง" - ได้รับการพิสูจน์แล้วว่าได้รับเวกเตอร์มีหลายตัวแปร เสียนกระจายและช่วงเวลาที่กำหนดแน่นิ่งวิธีการของส่วนประกอบที่สอดคล้องกันของแล้วx=(x1,…,xn)x=(x1,…,xn)\mathbf{x}=(x_1,\dots,x_n)I1,…,InI1,…,InI_1,\dots,I_n xx\mathbf{x} p(x1∈I1,…,xn∈In)≥∏i=1np(xi∈Ii)p(x1∈I1,…,xn∈In)≥∏i=1np(xi∈Ii)p(x_1\in I_1, \dots, x_n\in I_n)\geq \prod_{i=1}^n p(x_i\in I_i) (ความไม่เท่าเทียมกันแบบเกาส์สหสัมพันธ์หรือ GCI ดูhttps://arxiv.org/pdf/1512.08776.pdfสำหรับการกำหนดทั่วไปมากขึ้น) ดูเหมือนว่าจะเป็นเรื่องที่ดีและเรียบง่ายจริงๆและบทความบอกว่ามันมีผลที่ตามมาสำหรับช่วงความมั่นใจร่วม อย่างไรก็ตามดูเหมือนว่าไม่มีประโยชน์เลยสำหรับฉัน สมมติว่าเรากำลังประมาณค่าพารามิเตอร์ และเราพบตัวประมาณซึ่งเป็น (อาจจะไม่เชิง) ร่วมกัน (ตัวอย่างเช่น MLE ประมาณ) . จากนั้นถ้าฉันคำนวณช่วงเวลา 95% - ความมั่นใจสำหรับแต่ละพารามิเตอร์ GCI รับประกันว่า hypercubeเป็นพื้นที่ความเชื่อมั่นร่วมที่มีความครอบคลุมไม่น้อยกว่า ... ซึ่งค่อนข้างครอบคลุมต่ำ สำหรับในระดับปานกลางnθ1,…,θnθ1,…,θn\theta_1,\dots,\theta_nθ1^,…,θn^θ1^,…,θn^\hat{\theta_1},\dots,\hat{\theta_n}I1×…InI1×…InI_1\times\dots I_n(0.95)n(0.95)n(0.95)^n nnn ดังนั้นจึงไม่ใช่วิธีที่ชาญฉลาดในการค้นหาภูมิภาคที่มีความเชื่อมั่นร่วมกัน: ภูมิภาคที่มีความเชื่อมั่นตามปกติสำหรับ Gaussian หลายตัวแปรเช่นไฮเปอร์เซลล์ลิปลอยด์นั้นไม่ยากที่จะค้นหาว่าเมทริกซ์ความแปรปรวนร่วมเป็นที่รู้จักหรือไม่ อาจเป็นประโยชน์ในการค้นหาภูมิภาคที่มีความมั่นใจเมื่อไม่ทราบเมทริกซ์ความแปรปรวนร่วม? คุณสามารถแสดงตัวอย่างของความเกี่ยวข้องของ GCI ให้กับการคำนวณขอบเขตความเชื่อมั่นร่วมกันได้หรือไม่