วิธีที่ดีที่สุดในการคำนวณความเชื่อความน่าจะเป็นของหุ่นยนต์ที่ติดตั้งเซ็นเซอร์ภาพคืออะไร
ฉันพยายามใช้ 'พื้นที่ความเชื่อ' สำหรับหุ่นยนต์ที่มีกล้องเป็นเซ็นเซอร์หลัก คล้ายกับ SLAM หุ่นยนต์มีแผนที่เป็นจุด 3 มิติและเป็นภาษาท้องถิ่นโดยทำการจับคู่ 2D-3D กับสภาพแวดล้อมในทุกขั้นตอน สำหรับวัตถุประสงค์ของคำถามนี้ฉันสมมติว่าแผนที่จะไม่เปลี่ยนแปลง ในฐานะส่วนหนึ่งของการวางแผนพื้นที่แห่งความเชื่อฉันต้องการวางแผนเส้นทางสำหรับหุ่นยนต์ที่นำมาตั้งแต่ต้นจนถึงเป้าหมาย ดังนั้นฉันจะต้องสุ่มตัวอย่างสถานะที่เป็นไปได้ของหุ่นยนต์โดยไม่มีการเคลื่อนย้ายไปที่นั่นและการสังเกตที่หุ่นยนต์จะทำถ้ามันอยู่ในสถานะเหล่านั้นซึ่งร่วมกัน (แก้ไขฉันถ้าฉันผิด) ก่อให้เกิด แล้วจึงเข้ารหัสความไม่แน่นอนของการแปลที่จุดเหล่านั้น จากนั้นผู้วางแผนของฉันจะพยายามเชื่อมต่อโหนดที่ทำให้ฉันมีความไม่แน่นอนน้อยที่สุด (ความแปรปรวนร่วม) เนื่องจากความไม่แน่นอนของการแปลสำหรับหุ่นยนต์ที่ใช้กล้องนี้ขึ้นอยู่กับสิ่งต่าง ๆ เช่นจำนวนจุดคุณลักษณะที่สามารถมองเห็นได้จากสถานที่ที่กำหนดมุมหัวของหุ่นยนต์เป็นต้น: ฉันต้องการการประเมินว่า จะเป็นเพื่อตรวจสอบว่าฉันควรทิ้งมัน เพื่อไปที่นั่นฉันจะกำหนดรูปแบบการวัดสำหรับสิ่งนี้ได้อย่างไรมันจะเป็นรูปแบบการวัดของกล้องหรือจะเป็นสิ่งที่เกี่ยวข้องกับตำแหน่งของหุ่นยนต์หรือไม่ ฉันจะคาดเดาการวัดของฉันล่วงหน้าได้อย่างไรและฉันจะคำนวณความแปรปรวนร่วมของหุ่นยนต์ผ่านการวัดที่เดาได้อย่างไร แก้ไข: อ้างอิงหลักสำหรับฉันก็คือความคิดของอย่างรวดเร็วการสำรวจความเชื่อสุ่มต้นไม้ซึ่งเป็นส่วนขยายของวิธีการที่ความเชื่อถนนแผนที่ กระดาษอื่นที่เกี่ยวข้องใช้ RRBT เพื่อการวางแผนที่ จำกัด ในบทความนี้รัฐจะถูกสุ่มตัวอย่างคล้ายกับ RRT แบบดั้งเดิมซึ่งแสดงเป็นจุดยอดเป็นกราฟ แต่เมื่อมีการเชื่อมต่อจุดยอดอัลกอริทึมจะแพร่กระจายความเชื่อจากจุดสุดยอดปัจจุบันไปสู่ใหม่ (ฟังก์ชั่น PROPAGATE ในส่วน V ของ1 ) และนี่คือที่ที่ฉันติดอยู่: ฉันไม่เข้าใจอย่างเต็มที่ว่าฉันจะเผยแพร่ความเชื่อไปตามขอบโดยไม่ผ่านมันและได้รับการวัดใหม่ดังนั้นโควาเรียสใหม่จากการแปล กระดาษ RRBT กล่าวว่า "การคาดคะเนความแปรปรวนร่วมและสมการคาดการณ์ต้นทุนมีการใช้งานในฟังก์ชั่น PROPAGATE": แต่ถ้าใช้การทำนายเพียงอย่างเดียวจะรู้ได้อย่างไรว่ามีคุณสมบัติเพียงพอที่ตำแหน่งในอนาคตที่สามารถเพิ่ม / …