เหตุใดจึงมีการกำหนด / การสูญเสียข้อมูลสองรายการที่แตกต่างกันในโลจิสติกส์
ฉันได้เห็นสูตรการสูญเสียโลจิสติกสองประเภท เราสามารถแสดงให้พวกเขามีความเหมือนที่แตกต่างเพียงอย่างเดียวคือความหมายของฉลากYyyy สูตร / สัญกรณ์ 1, :y∈{0,+1}y∈{0,+1}y \in \{0, +1\} L(y,βTx)=−ylog(p)−(1−y)log(1−p)L(y,βTx)=−ylog(p)−(1−y)log(1−p) L(y,\beta^Tx)=-y\log(p)-(1-y)\log(1-p) โดยที่โดยที่ฟังก์ชันโลจิสติกแมปจำนวนจริงเป็น 0,1 ช่วงเวลาp=11+exp(−βTx)p=11+exp(−βTx)p=\frac 1 {1+\exp(-\beta^Tx)}βTxβTx\beta^T x สูตร / สัญกรณ์ 2, :y∈{−1,+1}y∈{−1,+1}y \in \{-1, +1\} L(y,βTx)=log(1+exp(−y⋅βTx))L(y,βTx)=log(1+exp(−y⋅βTx)) L(y,\beta^Tx)=\log(1+\exp{(-y\cdot \beta^Tx})) การเลือกสัญกรณ์ก็เหมือนกับการเลือกภาษามีข้อดีข้อเสียที่จะใช้อย่างใดอย่างหนึ่ง ข้อดีและข้อเสียของเครื่องหมายทั้งสองนี้คืออะไร ความพยายามของฉันที่จะตอบคำถามนี้คือดูเหมือนว่าชุมชนสถิติชอบสัญกรณ์แรกและชุมชนวิทยาศาสตร์คอมพิวเตอร์ชอบสัญกรณ์ที่สอง สัญกรณ์แรกสามารถอธิบายได้ด้วยคำว่า "ความน่าจะเป็น" เนื่องจากฟังก์ชันโลจิสติกจะแปลงจำนวนจริงเป็นช่วงเวลา 0,1βTxβTx\beta^Tx และสัญกรณ์ที่สองนั้นรัดกุมกว่าและง่ายกว่าที่จะเปรียบเทียบกับการสูญเสียบานพับหรือการสูญเสีย 0-1 ฉันถูกไหม? ข้อมูลเชิงลึกอื่น ๆ